File size: 44,911 Bytes
5a6b92c 3bae1b0 7ea92da 009fc15 f7edc34 ae67f00 2db7785 0c88166 75a37a1 5a6b92c 0d16641 632f915 0d16641 5a6b92c 11c6843 f45f651 11c6843 2bbc148 009fc15 8037bb9 2bbc148 bef1a9e d10db6f 8037bb9 8b6a430 d10db6f 9abb5da 8037bb9 6980695 2db7785 ae67f00 2db7785 327e0f7 2db7785 6980695 2db7785 0e5ee0b 4b7c020 0e5ee0b 2db7785 327e0f7 2db7785 ae67f00 6980695 ae67f00 7f3a649 99b346f ae67f00 1279dc9 7f3a649 1279dc9 7f3a649 749cf15 7f3a649 6c27910 7f3a649 f2a7df5 7f3a649 f2a7df5 7f3a649 ae67f00 7f3a649 99b346f 5a6b92c 0d16641 11c6843 0d16641 11c6843 0d16641 5a6b92c 647a8bc bb0ec55 647a8bc 0c88166 647a8bc 0178108 647a8bc 0178108 85d25e0 647a8bc f45f651 647a8bc bb0ec55 647a8bc 0c88166 647a8bc 0c88166 0b63445 0c88166 5dcb046 0b63445 5dcb046 0b63445 3629144 0b63445 3629144 1cf70cc 5dcb046 3629144 0b63445 f45f651 0b63445 f45f651 b81be91 f45f651 b81be91 3629144 0b63445 f45f651 0b63445 5a6b92c cc89461 6c27910 cc89461 6c27910 cc89461 6c27910 cc89461 3f200b0 11c6843 5a6b92c c4e9056 5a6b92c 5d6545b 5a6b92c 7381e90 59f7396 7381e90 5a6b92c 632f915 5a6b92c 0b63445 11c6843 5a6b92c 0b63445 5a6b92c 5d6545b 5a6b92c 7381e90 59f7396 7381e90 5a6b92c 0b63445 632f915 5a6b92c e3fb5d4 0b63445 8a3b93f 5a6b92c 3f200b0 11c6843 5a6b92c 2e1f3a0 d611464 49be9b4 79eb04b 5a6b92c 5d6545b 5a6b92c 7381e90 5a6b92c 49be9b4 e7a00b1 5a6b92c cc89461 11c6843 2ca7d09 5a6b92c 9d84e1a 5a6b92c 9d84e1a 5a6b92c e650ab2 5a6b92c 046807c 5a6b92c 0c811a0 cc89461 0c811a0 5a6b92c 632f915 edc121b 632f915 5a6b92c 7381e90 5a6b92c 33150a9 2ca7d09 7381e90 66a74a5 8b6a430 90d04a6 8b6a430 ae67f00 8b6a430 5760d4f ae67f00 5e09799 1cf70cc 7381e90 0c811a0 5760d4f ae67f00 f92438c 5760d4f 7381e90 ae67f00 5760d4f cc89461 ae67f00 3f200b0 0b63445 5b0b86e ae67f00 8b6a430 3f200b0 8b6a430 cc89461 7381e90 8b6a430 e7a00b1 7eb358f c6ea484 2ca7d09 c6ea484 eb70115 8b6a430 346df21 9abb5da 452874e a51bb26 8b6a430 d10db6f 7381e90 86016eb 8b6a430 83cf2b8 8b6a430 c6ea484 8a72e12 eb70115 5d6545b eb70115 5d6545b c6ea484 3001f12 90d04a6 86016eb 3001f12 c6ea484 bf1ebc4 c6ea484 57ee4ec db81e6c 57ee4ec db81e6c 57ee4ec db81e6c 57ee4ec e7a00b1 57ee4ec e7a00b1 57ee4ec e7a00b1 8dce46f e7a00b1 57ee4ec e7a00b1 57ee4ec e7a00b1 d5c8680 57ee4ec c8edada 57ee4ec e7a00b1 db81e6c e7a00b1 db81e6c f3f4df9 e7a00b1 f3f4df9 e7a00b1 f3f4df9 e7a00b1 f3f4df9 e7a00b1 57ee4ec b49a88b 57ee4ec db81e6c 57ee4ec e7a00b1 57ee4ec e7a00b1 57ee4ec d5c8680 0c811a0 d5c8680 0c811a0 9313499 e7a00b1 57ee4ec 346df21 57ee4ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 |
import streamlit as st
from openai import OpenAI
import json, os
import requests, time
from data_extractor import extract_data, find_product, get_product
from nutrient_analyzer import analyze_nutrients
from rda import find_nutrition
from typing import Dict, Any
from calc_cosine_similarity import find_cosine_similarity, find_embedding , find_relevant_file_paths
import pickle
#Used the @st.cache_resource decorator on this function.
#This Streamlit decorator ensures that the function is only executed once and its result (the OpenAI client) is cached.
#Subsequent calls to this function will return the cached client, avoiding unnecessary recreation.
@st.cache_resource
def get_openai_client():
#Enable debug mode for testing only
return True, OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
@st.cache_resource
def get_backend_urls():
data_extractor_url = "https://data-extractor-67qj89pa0-sonikas-projects-9936eaad.vercel.app/"
return data_extractor_url
debug_mode, client = get_openai_client()
data_extractor_url = get_backend_urls()
assistant_default_doc = None
def extract_data_from_product_image(image_links, data_extractor_url):
response = extract_data(image_links)
return response
def get_product_data_from_db(product_name, data_extractor_url):
response = get_product(product_name)
return response
def get_product_list(product_name_by_user, data_extractor_url):
response = find_product(product_name_by_user)
return response
def rda_analysis(product_info_from_db_nutritionalInformation: Dict[str, Any],
product_info_from_db_servingSize: float) -> Dict[str, Any]:
"""
Analyze nutritional information and return RDA analysis data in a structured format.
Args:
product_info_from_db_nutritionalInformation: Dictionary containing nutritional information
product_info_from_db_servingSize: Serving size value
Returns:
Dictionary containing nutrition per serving and user serving size
"""
nutrient_name_list = [
'energy', 'protein', 'carbohydrates', 'addedSugars', 'dietaryFiber',
'totalFat', 'saturatedFat', 'monounsaturatedFat', 'polyunsaturatedFat',
'transFat', 'sodium'
]
try:
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": """You will be given nutritional information of a food product.
Return the data in the exact JSON format specified in the schema,
with all required fields."""
},
{
"role": "user",
"content": f"Nutritional content of food product is {json.dumps(product_info_from_db_nutritionalInformation)}. "
f"Extract the values of the following nutrients: {', '.join(nutrient_name_list)}."
}
],
response_format={"type": "json_schema", "json_schema": {
"name": "Nutritional_Info_Label_Reader",
"schema": {
"type": "object",
"properties": {
"energy": {"type": "number"},
"protein": {"type": "number"},
"carbohydrates": {"type": "number"},
"addedSugars": {"type": "number"},
"dietaryFiber": {"type": "number"},
"totalFat": {"type": "number"},
"saturatedFat": {"type": "number"},
"monounsaturatedFat": {"type": "number"},
"polyunsaturatedFat": {"type": "number"},
"transFat": {"type": "number"},
"sodium": {"type": "number"},
"servingSize": {"type": "number"},
},
"required": nutrient_name_list + ["servingSize"],
"additionalProperties": False
},
"strict": True
}}
)
# Parse the JSON response
nutrition_data = json.loads(response.choices[0].message.content)
# Validate that all required fields are present
missing_fields = [field for field in nutrient_name_list + ["servingSize"]
if field not in nutrition_data]
if missing_fields:
print(f"Missing required fields in API response: {missing_fields}")
# Validate that all values are numbers
non_numeric_fields = [field for field, value in nutrition_data.items()
if not isinstance(value, (int, float))]
if non_numeric_fields:
raise ValueError(f"Non-numeric values found in fields: {non_numeric_fields}")
return {
'nutritionPerServing': nutrition_data,
'userServingSize': product_info_from_db_servingSize
}
except Exception as e:
# Log the error and raise it for proper handling
print(f"Error in RDA analysis: {str(e)}")
raise
def find_product_nutrients(product_info_from_db):
#GET Response: {'_id': '6714f0487a0e96d7aae2e839',
#'brandName': 'Parle', 'claims': ['This product does not contain gold'],
#'fssaiLicenseNumbers': [10013022002253],
#'ingredients': [{'metadata': '', 'name': 'Refined Wheat Flour (Maida)', 'percent': '63%'}, {'metadata': '', 'name': 'Sugar', 'percent': ''}, {'metadata': '', 'name': 'Refined Palm Oil', 'percent': ''}, {'metadata': '(Glucose, Levulose)', 'name': 'Invert Sugar Syrup', 'percent': ''}, {'metadata': 'I', 'name': 'Sugar Citric Acid', 'percent': ''}, {'metadata': '', 'name': 'Milk Solids', 'percent': '1%'}, {'metadata': '', 'name': 'Iodised Salt', 'percent': ''}, {'metadata': '503(I), 500 (I)', 'name': 'Raising Agents', 'percent': ''}, {'metadata': '1101 (i)', 'name': 'Flour Treatment Agent', 'percent': ''}, {'metadata': 'Diacetyl Tartaric and Fatty Acid Esters of Glycerol (of Vegetable Origin)', 'name': 'Emulsifier', 'percent': ''}, {'metadata': 'Vanilla', 'name': 'Artificial Flavouring Substances', 'percent': ''}],
#'nutritionalInformation': [{'name': 'Energy', 'unit': 'kcal', 'values': [{'base': 'per 100 g','value': 462}]},
#{'name': 'Protein', 'unit': 'g', 'values': [{'base': 'per 100 g', 'value': 6.7}]},
#{'name': 'Carbohydrate', 'unit': 'g', 'values': [{'base': 'per 100 g', 'value': 76.0}, {'base': 'of which sugars', 'value': 26.9}]},
#{'name': 'Fat', 'unit': 'g', 'values': [{'base': 'per 100 g', 'value': 14.6}, {'base': 'Saturated Fat', 'value': 6.8}, {'base': 'Trans Fat', 'value': 0}]},
#{'name': 'Total Sugars', 'unit': 'g', 'values': [{'base': 'per 100 g', 'value': 27.7}]},
#{'name': 'Added Sugars', 'unit': 'g', 'values': [{'base': 'per 100 g', 'value': 26.9}]},
#{'name': 'Cholesterol', 'unit': 'mg', 'values': [{'base': 'per 100 g', 'value': 0}]},
#{'name': 'Sodium', 'unit': 'mg', 'values': [{'base': 'per 100 g', 'value': 281}]}],
#'packagingSize': {'quantity': 82, 'unit': 'g'},
#'productName': 'Parle-G Gold Biscuits',
#'servingSize': {'quantity': 18.8, 'unit': 'g'},
#'servingsPerPack': 3.98,
#'shelfLife': '7 months from packaging'}
product_type = None
calories = None
sugar = None
total_sugar = None
added_sugar = None
salt = None
serving_size = None
if product_info_from_db["servingSize"]["unit"].lower() == "g":
product_type = "solid"
elif product_info_from_db["servingSize"]["unit"].lower() == "ml":
product_type = "liquid"
serving_size = product_info_from_db["servingSize"]["quantity"]
for item in product_info_from_db["nutritionalInformation"]:
if 'energy' in item['name'].lower():
calories = item['values'][0]['value']
if 'total sugar' in item['name'].lower():
total_sugar = item['values'][0]['value']
if 'added sugar' in item['name'].lower():
added_sugar = item['values'][0]['value']
if 'sugar' in item['name'].lower() and 'added sugar' not in item['name'].lower() and 'total sugar' not in item['name'].lower():
sugar = item['values'][0]['value']
if 'salt' in item['name'].lower():
if salt is None:
salt = 0
salt += item['values'][0]['value']
if salt is None:
salt = 0
for item in product_info_from_db["nutritionalInformation"]:
if 'sodium' in item['name'].lower():
salt += item['values'][0]['value']
if added_sugar is not None and added_sugar > 0 and sugar is None:
sugar = added_sugar
elif total_sugar is not None and total_sugar > 0 and added_sugar is None and sugar is None:
sugar = total_sugar
return product_type, calories, sugar, salt, serving_size
# Initialize assistants and vector stores
# Function to initialize vector stores and assistants
@st.cache_resource
def initialize_assistants_and_vector_stores():
#Processing Level
global client
assistant1 = client.beta.assistants.create(
name="Processing Level",
instructions="You are an expert dietician. Use you knowledge base to answer questions about the processing level of food product.",
model="gpt-4o",
tools=[{"type": "file_search"}],
temperature=0,
top_p = 0.85
)
#Harmful Ingredients
assistant3 = client.beta.assistants.create(
name="Misleading Claims",
instructions="You are an expert dietician. Use you knowledge base to answer questions about the misleading claims about food product.",
model="gpt-4o",
tools=[{"type": "file_search"}],
temperature=0,
top_p = 0.85
)
# Create a vector store
vector_store1 = client.beta.vector_stores.create(name="Processing Level Vec")
# Ready the files for upload to OpenAI
file_paths = ["Processing_Level.docx"]
file_streams = [open(path, "rb") for path in file_paths]
# Use the upload and poll SDK helper to upload the files, add them to the vector store,
# and poll the status of the file batch for completion.
file_batch1 = client.beta.vector_stores.file_batches.upload_and_poll(
vector_store_id=vector_store1.id, files=file_streams
)
# You can print the status and the file counts of the batch to see the result of this operation.
print(file_batch1.status)
print(file_batch1.file_counts)
# Create a vector store
vector_store3 = client.beta.vector_stores.create(name="Misleading Claims Vec")
# Ready the files for upload to OpenAI
file_paths = ["MisLeading_Claims.docx"]
file_streams = [open(path, "rb") for path in file_paths]
# Use the upload and poll SDK helper to upload the files, add them to the vector store,
# and poll the status of the file batch for completion.
file_batch3 = client.beta.vector_stores.file_batches.upload_and_poll(
vector_store_id=vector_store3.id, files=file_streams
)
# You can print the status and the file counts of the batch to see the result of this operation.
print(file_batch3.status)
print(file_batch3.file_counts)
#Processing Level
assistant1 = client.beta.assistants.update(
assistant_id=assistant1.id,
tool_resources={"file_search": {"vector_store_ids": [vector_store1.id]}},
)
#Misleading Claims
assistant3 = client.beta.assistants.update(
assistant_id=assistant3.id,
tool_resources={"file_search": {"vector_store_ids": [vector_store3.id]}},
)
embeddings_titles = []
if not os.path.exists('embeddings.pkl'):
#Find embeddings of titles from titles.txt
titles = []
#if embedding_titles.pkl is absent
with open('titles.txt', 'r') as file:
lines = file.readlines()
titles = [line.strip() for line in lines]
embeddings_titles = find_embedding(titles, lim=50)
#Save embeddings_titles to embedding_titles.pkl
data = {
'sentences': titles[:50],
'embeddings': embeddings_titles
}
with open('embeddings.pkl', 'wb') as f:
pickle.dump(data, f)
if os.path.exists("embeddings.pkl"):
print("embeddings.pkl successfully written!")
else:
print("Reading embeddings.pkl")
# Load both sentences and embeddings
with open('embeddings.pkl', 'rb') as f:
loaded_data = pickle.load(f)
embeddings_titles = loaded_data['embeddings']
return assistant1, assistant3, embeddings_titles
assistant1, assistant3, embeddings_titles = initialize_assistants_and_vector_stores()
def get_files_with_ingredient_info(ingredient, N=1):
file_paths = []
#Find embedding for title of all files
global embeddings_titles
with open('titles.txt', 'r') as file:
lines = file.readlines()
titles = [line.strip() for line in lines]
#Apply cosine similarity between embedding of ingredient name and title of all files
file_paths_abs, file_titles = find_relevant_file_paths(ingredient, embeddings_titles, titles, N=N)
#Fine top N titles that are the most similar to the ingredient's name
#Find file names for those titles
if len(file_paths_abs) == 0:
file_paths.append("Ingredients.docx")
else:
for file_path in file_paths_abs:
file_paths.append(f"articles/{file_path}")
print(f"Titles are {file_titles}")
return file_paths
def get_assistant_for_ingredient(ingredient, N=2):
global client
global assistant_default_doc
#Harmful Ingredients
assistant2 = client.beta.assistants.create(
name="Harmful Ingredients",
instructions=f"You are an expert dietician. Use you knowledge base to answer questions about the ingredient {ingredient} in a food product.",
model="gpt-4o",
tools=[{"type": "file_search"}],
temperature=0,
top_p = 0.85
)
# Create a vector store
vector_store2 = client.beta.vector_stores.create(name="Harmful Ingredients Vec")
# Ready the files for upload to OpenAI.
file_paths = get_files_with_ingredient_info(ingredient, N)
if file_paths[0] == "Ingredients.docx" and assistant_default_doc:
print(f"Using Ingredients.docx for analyzing ingredient {ingredient}")
return assistant_default_doc
print(f"DEBUG : Creating vector store for files {file_paths} to analyze ingredient {ingredient}")
file_streams = [open(path, "rb") for path in file_paths]
# Use the upload and poll SDK helper to upload the files, add them to the vector store,
# and poll the status of the file batch for completion.
file_batch2 = client.beta.vector_stores.file_batches.upload_and_poll(
vector_store_id=vector_store2.id, files=file_streams
)
# You can print the status and the file counts of the batch to see the result of this operation.
print(file_batch2.status)
print(file_batch2.file_counts)
#harmful Ingredients
assistant2 = client.beta.assistants.update(
assistant_id=assistant2.id,
tool_resources={"file_search": {"vector_store_ids": [vector_store2.id]}},
)
if file_paths[0] == "Ingredients.docx" and assistant_default_doc is None:
assistant_default_doc = assistant2
return assistant2
def analyze_nutrition_icmr_rda(nutrient_analysis, nutrient_analysis_rda):
global debug_mode, client
system_prompt = """
Task: Analyze the nutritional content of the food item and compare it to the Recommended Daily Allowance (RDA) or threshold limits defined by ICMR. Provide practical, contextual insights based on the following nutrients:
Nutrient Breakdown and Analysis:
Calories:
Compare the calorie content to a well-balanced meal.
Calculate how many meals' worth of calories the product contains, providing context for balanced eating.
Sugar & Salt:
Convert the amounts of sugar and salt into teaspoons to help users easily understand their daily intake.
Explain whether the levels exceed the ICMR-defined limits and what that means for overall health.
Fat & Calories:
Analyze fat content, specifying whether it is high or low in relation to a balanced diet.
Offer insights on how the fat and calorie levels may impact the user’s overall diet, including potential risks or benefits.
Contextual Insights:
For each nutrient, explain how its levels (whether high or low) affect health and diet balance.
Provide actionable recommendations for the user, suggesting healthier alternatives or adjustments to consumption if necessary.
Tailor the advice to the user's lifestyle, such as recommending lower intake if sedentary or suggesting other dietary considerations based on the product's composition.
Output Structure:
For each nutrient (Calories, Sugar, Salt, Fat), specify if the levels exceed or are below the RDA or ICMR threshold.
Provide clear, concise comparisons (e.g., sugar exceeds the RDA by 20%, equivalent to X teaspoons).
"""
user_prompt = f"""
Nutrition Analysis :
{nutrient_analysis}
{nutrient_analysis_rda}
"""
if debug_mode:
print(f"\nuser_prompt : \n {user_prompt}")
completion = client.chat.completions.create(
model="gpt-4o", # Make sure to use an appropriate model
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
)
return completion.choices[0].message.content
def analyze_processing_level(ingredients, assistant_id):
global debug_mode, client
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": "Categorize food product that has following ingredients: " + ', '.join(ingredients) + " into Group A, Group B, or Group C based on the document. The output must only be the group category name (Group A, Group B, or Group C) alongwith the reason behind assigning that respective category to the product. If the group category cannot be determined, output 'NOT FOUND'.",
}
]
)
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id,
assistant_id=assistant_id,
include=["step_details.tool_calls[*].file_search.results[*].content"]
)
# Polling loop to wait for a response in the thread
messages = []
max_retries = 10 # You can set a maximum retry limit
retries = 0
wait_time = 2 # Seconds to wait between retries
while retries < max_retries:
messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))
if messages: # If we receive any messages, break the loop
break
retries += 1
time.sleep(wait_time)
# Check if we got the message content
if not messages:
raise TimeoutError("Processing Level : No messages were returned after polling.")
message_content = messages[0].content[0].text
annotations = message_content.annotations
#citations = []
for index, annotation in enumerate(annotations):
message_content.value = message_content.value.replace(annotation.text, "")
#if file_citation := getattr(annotation, "file_citation", None):
# cited_file = client.files.retrieve(file_citation.file_id)
# citations.append(f"[{index}] {cited_file.filename}")
if debug_mode:
print(message_content.value)
processing_level_str = message_content.value
return processing_level_str
def analyze_harmful_ingredients(ingredient, assistant_id):
global debug_mode, client
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": "A food product has the ingredient: " + ingredient + ". Is this ingredient safe to eat? The output must be in JSON format: {<ingredient_name>: <information from the document about why ingredient is harmful>}. If information about an ingredient is not found in the documents, the value for that ingredient must start with the prefix '(NOT FOUND IN DOCUMENT)' followed by the LLM's response based on its own knowledge.",
}
]
)
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id,
assistant_id=assistant_id,
include=["step_details.tool_calls[*].file_search.results[*].content"]
)
# Polling loop to wait for a response in the thread
messages = []
max_retries = 10 # You can set a maximum retry limit
retries = 0
wait_time = 2 # Seconds to wait between retries
while retries < max_retries:
messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))
if messages: # If we receive any messages, break the loop
break
retries += 1
time.sleep(wait_time)
# Check if we got the message content
if not messages:
raise TimeoutError("Processing Ingredients : No messages were returned after polling.")
message_content = messages[0].content[0].text
annotations = message_content.annotations
#citations = []
#print(f"Length of annotations is {len(annotations)}")
for index, annotation in enumerate(annotations):
if file_citation := getattr(annotation, "file_citation", None):
#cited_file = client.files.retrieve(file_citation.file_id)
#citations.append(f"[{index}] {cited_file.filename}")
message_content.value = message_content.value.replace(annotation.text, "")
if debug_mode:
ingredients_not_found_in_doc = []
print(message_content.value)
for key, value in json.loads(message_content.value.replace("```", "").replace("json", "")).items():
if value.startswith("(NOT FOUND IN DOCUMENT)"):
ingredients_not_found_in_doc.append(key)
print(f"Ingredients not found in database {','.join(ingredients_not_found_in_doc)}")
harmful_ingredient_analysis = json.loads(message_content.value.replace("```", "").replace("json", "").replace("(NOT FOUND IN DOCUMENT) ", ""))
harmful_ingredient_analysis_str = ""
for key, value in harmful_ingredient_analysis.items():
harmful_ingredient_analysis_str += f"{key}: {value}\n"
return harmful_ingredient_analysis_str
def analyze_claims(claims, ingredients, assistant_id):
global debug_mode, client
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": "A food product named has the following claims: " + ', '.join(claims) + " and ingredients: " + ', '.join(ingredients) + """. Please evaluate the validity of each claim as well as assess if the product name is misleading.
The output must be in JSON format as follows:
{
<claim_name>: {
'Verdict': <A judgment on the claim's accuracy, ranging from 'Accurate' to varying degrees of 'Misleading'>,
'Why?': <A concise, bulleted summary explaining the specific ingredients or aspects contributing to the discrepancy>,
'Detailed Analysis': <An in-depth explanation of the claim, incorporating relevant regulatory guidelines and health perspectives to support the verdict>
}
}
"""
}
]
)
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id,
assistant_id=assistant_id,
include=["step_details.tool_calls[*].file_search.results[*].content"]
)
# Polling loop to wait for a response in the thread
messages = []
max_retries = 10 # You can set a maximum retry limit
retries = 0
wait_time = 2 # Seconds to wait between retries
while retries < max_retries:
messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))
if messages: # If we receive any messages, break the loop
break
retries += 1
time.sleep(wait_time)
# Check if we got the message content
if not messages:
raise TimeoutError("Processing Claims : No messages were returned after polling.")
message_content = messages[0].content[0].text
annotations = message_content.annotations
#citations = []
#print(f"Length of annotations is {len(annotations)}")
for index, annotation in enumerate(annotations):
if file_citation := getattr(annotation, "file_citation", None):
#cited_file = client.files.retrieve(file_citation.file_id)
#citations.append(f"[{index}] {cited_file.filename}")
message_content.value = message_content.value.replace(annotation.text, "")
#if debug_mode:
# claims_not_found_in_doc = []
# print(message_content.value)
# for key, value in json.loads(message_content.value.replace("```", "").replace("json", "")).items():
# if value.startswith("(NOT FOUND IN DOCUMENT)"):
# claims_not_found_in_doc.append(key)
# print(f"Claims not found in the doc are {','.join(claims_not_found_in_doc)}")
#claims_analysis = json.loads(message_content.value.replace("```", "").replace("json", "").replace("(NOT FOUND IN DOCUMENT) ", ""))
claims_analysis = {}
if message_content.value != "":
claims_analysis = json.loads(message_content.value.replace("```", "").replace("json", ""))
claims_analysis_str = ""
for key, value in claims_analysis.items():
claims_analysis_str += f"{key}: {value}\n"
return claims_analysis_str
def generate_final_analysis(brand_name, product_name, nutritional_level, processing_level, harmful_ingredient_analysis, claims_analysis, system_prompt):
global debug_mode, client
system_prompt_orig = """You are provided with a detailed analysis of a food product. Your task is to generate actionable insights to help the user decide whether to consume the product, at what frequency, and identify any potential harms or benefits. Consider the context of consumption to ensure the advice is personalized and practical.
Use the following criteria to generate your response:
1. **Nutrition Analysis:**
- How much do sugar, calories, or salt exceed the threshold limit?
- How processed is the product?
- How much of the Recommended Dietary Allowance (RDA) does the product provide for each nutrient?
2. **Harmful Ingredients:**
- Identify any harmful or questionable ingredients.
3. **Misleading Claims:**
- Are there any misleading claims made by the brand?
Additionally, consider the following while generating insights:
1. **Consumption Context:**
- Is the product being consumed for health reasons or as a treat?
- Could the consumer be overlooking hidden harms?
- If the product is something they could consume daily, should they?
- If they are consuming it daily, what potential harm are they not noticing?
- If the product is intended for health purposes, are there concerns the user might miss?
**Output:**
- Recommend whether the product should be consumed or avoided.
- If recommended, specify the appropriate frequency and intended functionality (e.g., treat vs. health).
- Highlight any risks or benefits at that level of consumption."""
user_prompt = f"""
Product Name: {brand_name} {product_name}
Nutrition Analysis :
{nutritional_level}
Processing Level:
{processing_level}
Ingredient Analysis:
{harmful_ingredient_analysis}
Claims Analysis:
{claims_analysis}
"""
if debug_mode:
print(f"\nuser_prompt : \n {user_prompt}")
completion = client.chat.completions.create(
model="gpt-4o", # Make sure to use an appropriate model
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
)
return f"Brand: {brand_name}\n\nProduct: {product_name}\n\nAnalysis:\n\n{completion.choices[0].message.content}"
def analyze_product(product_info_raw, system_prompt):
global assistant1, assistant3
if product_info_raw != "{}":
product_info_from_db = json.loads(product_info_raw)
brand_name = product_info_from_db.get("brandName", "")
product_name = product_info_from_db.get("productName", "")
ingredients_list = [ingredient["name"] for ingredient in product_info_from_db.get("ingredients", [])]
claims_list = product_info_from_db.get("claims", [])
nutritional_information = product_info_from_db['nutritionalInformation']
serving_size = product_info_from_db["servingSize"]["quantity"]
nutrient_analysis_rda = ""
nutrient_analysis = ""
nutritional_level = ""
processing_level = ""
harmful_ingredient_analysis = ""
claims_analysis = ""
if nutritional_information:
product_type, calories, sugar, salt, serving_size = find_product_nutrients(product_info_from_db)
if product_type is not None and serving_size is not None and serving_size > 0:
nutrient_analysis = analyze_nutrients(product_type, calories, sugar, salt, serving_size)
else:
return "product not found because product information in the db is corrupt"
print(f"DEBUG ! nutrient analysis is {nutrient_analysis}")
nutrient_analysis_rda_data = rda_analysis(nutritional_information, serving_size)
print(f"DEBUG ! Data for RDA nutrient analysis is of type {type(nutrient_analysis_rda_data)} - {nutrient_analysis_rda_data}")
print(f"DEBUG : nutrient_analysis_rda_data['nutritionPerServing'] : {nutrient_analysis_rda_data['nutritionPerServing']}")
print(f"DEBUG : nutrient_analysis_rda_data['userServingSize'] : {nutrient_analysis_rda_data['userServingSize']}")
nutrient_analysis_rda = find_nutrition(nutrient_analysis_rda_data)
print(f"DEBUG ! RDA nutrient analysis is {nutrient_analysis_rda}")
#Call GPT for nutrient analysis
nutritional_level = analyze_nutrition_icmr_rda(nutrient_analysis, nutrient_analysis_rda)
if len(ingredients_list) > 0:
processing_level = analyze_processing_level(ingredients_list, assistant1.id) if ingredients_list else ""
for ingredient in ingredients_list:
assistant_id_ingredient = get_assistant_for_ingredient(ingredient, 2)
harmful_ingredient_analysis += analyze_harmful_ingredients(ingredient, assistant_id_ingredient.id) + "\n"
if len(claims_list) > 0:
claims_analysis = analyze_claims(claims_list, ingredients_list, assistant3.id) if claims_list else ""
final_analysis = generate_final_analysis(brand_name, product_name, nutritional_level, processing_level, harmful_ingredient_analysis, claims_analysis, system_prompt)
return final_analysis
#else:
# return "I'm sorry, product information could not be extracted from the url."
# Streamlit app
# Initialize session state
if 'messages' not in st.session_state:
st.session_state.messages = []
def chatbot_response(image_urls_str, product_name_by_user, data_extractor_url, system_prompt, extract_info = True):
# Process the user input and generate a response
processing_level = ""
harmful_ingredient_analysis = ""
claims_analysis = ""
image_urls = []
if product_name_by_user != "":
similar_product_list_json = get_product_list(product_name_by_user, data_extractor_url)
if similar_product_list_json and extract_info == False:
with st.spinner("Fetching product information from our database... This may take a moment."):
print(f"similar_product_list_json : {similar_product_list_json}")
if 'error' not in similar_product_list_json.keys():
similar_product_list = similar_product_list_json['products']
return similar_product_list, "Product list found from our database"
else:
return [], "Product list not found"
elif extract_info == True:
with st.spinner("Analyzing the product... This may take a moment."):
product_info_raw = get_product_data_from_db(product_name_by_user, data_extractor_url)
print(f"DEBUG product_info_raw from name: {product_info_raw}")
if product_info_raw == "{}":
return [], "product not found because product information in the db is corrupt"
if 'error' not in json.loads(product_info_raw).keys():
final_analysis = analyze_product(product_info_raw, system_prompt)
return [], final_analysis
else:
return [], f"Product information could not be extracted from our database because of {json.loads(product_info_raw)['error']}"
else:
return [], "Product not found in our database."
elif "http:/" in image_urls_str.lower() or "https:/" in image_urls_str.lower():
# Extract image URL from user input
if "," not in image_urls_str:
image_urls.append(image_urls_str)
else:
for url in image_urls_str.split(","):
if "http:/" in url.lower() or "https:/" in url.lower():
image_urls.append(url)
with st.spinner("Analyzing the product... This may take a moment."):
product_info_raw = extract_data_from_product_image(image_urls, data_extractor_url)
print(f"DEBUG product_info_raw from image : {product_info_raw}")
if 'error' not in json.loads(product_info_raw).keys():
final_analysis = analyze_product(product_info_raw, system_prompt)
return [], final_analysis
else:
return [], f"Product information could not be extracted from the image because of {json.loads(product_info_raw)['error']}"
else:
return [], "I'm here to analyze food products. Please provide an image URL (Example : http://example.com/image.jpg) or product name (Example : Harvest Gold Bread)"
class SessionState:
"""Handles all session state variables in a centralized way"""
@staticmethod
def initialize():
initial_states = {
"messages": [],
"product_selected": False,
"product_shared": False,
"analyze_more": True,
"welcome_shown": False,
"yes_no_choice": None,
"welcome_msg": "Welcome to ConsumeWise! What product would you like me to analyze today?",
"system_prompt": "",
"similar_products": [],
"awaiting_selection": False,
"current_user_input": "",
"selected_product": None
}
for key, value in initial_states.items():
if key not in st.session_state:
st.session_state[key] = value
class SystemPromptManager:
"""Manages the system prompt input and related functionality"""
@staticmethod
def render_sidebar():
st.sidebar.header("System Prompt")
system_prompt = st.sidebar.text_area(
"Enter your system prompt here (required):",
value=st.session_state.system_prompt,
height=150,
key="system_prompt_input"
)
if st.sidebar.button("Submit Prompt"):
if system_prompt.strip():
st.session_state.system_prompt = system_prompt
SessionState.initialize() # Reset all states
st.rerun()
else:
st.sidebar.error("Please enter a valid system prompt.")
return system_prompt.strip()
class ProductSelector:
"""Handles product selection logic"""
@staticmethod
def handle_selection():
if st.session_state.similar_products:
# Create a container for the selection UI
selection_container = st.container()
with selection_container:
# Radio button for product selection
choice = st.radio(
"Select a product:",
st.session_state.similar_products + ["None of the above"],
key="product_choice"
)
# Confirm button
confirm_clicked = st.button("Confirm Selection")
msg = ""
# Only process the selection when confirm is clicked
if confirm_clicked:
st.session_state.awaiting_selection = False
if choice != "None of the above":
#st.session_state.selected_product = choice
st.session_state.messages.append({"role": "assistant", "content": f"You selected {choice}"})
_, msg = chatbot_response("", choice, "", st.session_state.system_prompt, extract_info=True)
#Check if analysis couldn't be done because db had incomplete information
if msg != "product not found because product information in the db is corrupt":
#Only when msg is acceptable
st.session_state.messages.append({"role": "assistant", "content": msg})
with st.chat_message("assistant"):
st.markdown(msg)
st.session_state.product_selected = True
keys_to_keep = ["system_prompt", "messages", "welcome_msg"]
keys_to_delete = [key for key in st.session_state.keys() if key not in keys_to_keep]
for key in keys_to_delete:
del st.session_state[key]
st.session_state.welcome_msg = "What product would you like me to analyze next?"
if choice == "None of the above" or msg == "product not found because product information in the db is corrupt":
st.session_state.messages.append(
{"role": "assistant", "content": "Please provide the image URL of the product to analyze based on the latest information."}
)
with st.chat_message("assistant"):
st.markdown("Please provide the image URL of the product to analyze based on the latest information.")
#st.session_state.selected_product = None
st.rerun()
# Prevent further chat input while awaiting selection
return True # Indicates selection is in progress
return False # Indicates no selection in progress
class ChatManager:
"""Manages chat interactions and responses"""
@staticmethod
def process_response(user_input):
if not st.session_state.product_selected:
if "http:/" not in user_input and "https:/" not in user_input:
response, status = ChatManager._handle_product_name(user_input)
else:
response, status = ChatManager._handle_product_url(user_input)
return response, status
@staticmethod
def _handle_product_name(user_input):
st.session_state.product_shared = True
st.session_state.current_user_input = user_input
similar_products, _ = chatbot_response(
"", user_input, data_extractor_url,
st.session_state.system_prompt, extract_info=False
)
if len(similar_products) > 0:
st.session_state.similar_products = similar_products
st.session_state.awaiting_selection = True
return "Here are some similar products from our database. Please select:", "no success"
return "Product not found in our database. Please provide the image URL of the product.", "no success"
@staticmethod
def _handle_product_url(user_input):
is_valid_url = (".jpeg" in user_input or ".jpg" in user_input) and \
("http:/" in user_input or "https:/" in user_input)
if not st.session_state.product_shared:
return "Please provide the product name first"
if is_valid_url and st.session_state.product_shared:
_, msg = chatbot_response(
user_input, "", data_extractor_url,
st.session_state.system_prompt, extract_info=True
)
st.session_state.product_selected = True
if msg != "product not found because image is not clear" and "Product information could not be extracted from the image" not in msg:
response = msg
status = "success"
elif msg == "product not found because image is not clear":
response = msg + ". Please share clear image URLs!"
status = "no success"
else:
response = msg + ".Please re-try!!"
status = "no success"
return response, status
return "Please provide valid image URL of the product.", "no success"
def main():
#Initialize session state
SessionState.initialize()
# Display title
st.title("ConsumeWise - Your Food Product Analysis Assistant")
# Handle system prompt
system_prompt = SystemPromptManager.render_sidebar()
if not system_prompt:
st.warning("⚠️ Please enter a system prompt in the sidebar before proceeding.")
st.chat_input("Enter your message:", disabled=True)
return
# Show welcome message
if not st.session_state.welcome_shown:
st.session_state.messages.append({
"role": "assistant",
"content": st.session_state.welcome_msg
})
st.session_state.welcome_shown = True
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle product selection if awaiting
selection_in_progress = False
if st.session_state.awaiting_selection:
selection_in_progress = ProductSelector.handle_selection()
# Only show chat input if not awaiting selection
if not selection_in_progress:
user_input = st.chat_input("Enter your message:", key="user_input")
if user_input:
# Add user message to chat
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
# Process response
response, status = ChatManager.process_response(user_input)
st.session_state.messages.append({"role": "assistant", "content": response})
with st.chat_message("assistant"):
st.markdown(response)
if status == "success":
SessionState.initialize() # Reset states for next product
#st.session_state.welcome_msg = "What is the next product you would like me to analyze today?"
keys_to_keep = ["system_prompt", "messages", "welcome_msg"]
keys_to_delete = [key for key in st.session_state.keys() if key not in keys_to_keep]
for key in keys_to_delete:
del st.session_state[key]
st.session_state.welcome_msg = "What product would you like me to analyze next?"
#elif response: # Only add response if it's not None
# print(f"DEBUG : st.session_state.awaiting_selection : {st.session_state.awaiting_selection}")
# print(f"response : {response}")
st.rerun()
else:
# Disable chat input while selection is in progress
st.chat_input("Please confirm your selection above first...", disabled=True)
# Clear chat history button
if st.button("Clear Chat History"):
st.session_state.clear()
st.rerun()
if __name__ == "__main__":
main() |