File size: 5,056 Bytes
d2cb17f
 
 
 
 
 
 
 
 
409e708
d2cb17f
2591f57
d2cb17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
409e708
d2cb17f
 
 
 
 
 
 
 
 
 
 
 
 
 
409e708
 
d2cb17f
 
 
 
 
 
 
 
2591f57
 
d2cb17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04e96c0
 
d2cb17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07216f8
d2cb17f
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import pymupdf
from io import BytesIO
from PIL import Image
import pdfplumber
import ast
import google.generativeai as genai
from PIL import Image, ImageDraw
import openai
import requests
import os

# from constants import GEMINI_API_KEY, OPENAI_API_KEY
from utils import (
    draw_boxes,
    pdf_to_images,
    parse_bboxs_gemini_flash,
    convert_pdf_to_images,
    encode_image_to_base64,
)


def extract_images_pymupdf(pdf_file):
    pdf_path = "extract_images/input_docs/uploaded_pdf.pdf"
    with open(pdf_path, "wb") as f:
        f.write(pdf_file)

    doc = pymupdf.open(pdf_path)
    images = []
    for page_idx, page in enumerate(doc):
        for img_index, img in enumerate(doc.get_page_images(page_idx)):
            xref = img[0]
            base_image = doc.extract_image(xref)
            image_bytes = base_image["image"]
            image = Image.open(BytesIO(image_bytes))
            images.append(image)
    return images if images != [] else None


def extract_images_pdfplumber(pdf_file):
    pdf_path = "extract_images/input_docs/uploaded_pdf.pdf"
    with open(pdf_path, "wb") as f:
        f.write(pdf_file)

    images = []
    output_dir = "extract_tables/table_outputs"
    pdf_obj = pdfplumber.open(pdf_path)
    for page_idx, page in enumerate(pdf_obj.pages):
        page_bbox = []
        for image_idx, image in enumerate(page.images):
            page_height = page.height
            image_bbox = (
                image["x0"],
                page_height - image["y1"],
                image["x1"],
                page_height - image["y0"],
            )
            page_bbox.append(image_bbox)
            cropped_page = page.crop(image_bbox)
            image_obj = cropped_page.to_image(resolution=400)
            image_path = os.path.join(
                output_dir, f"image-{page_idx + 1}-{image_idx}.png"
            )
            image_obj.save(image_path)
            image = Image.open(image_path)
            images.append(image)
    return images if images != [] else None


def extract_images_gemini(model, pdf_file):
    gemini_api_key = os.getenv("GEMINI_API_KEY")
    genai.configure(api_key=gemini_api_key)
    gemini_model = genai.GenerativeModel(model)
    prompt = f"Extract the bounding boxes of all the images present in this page. Return the bounding boxes as list of lists. Do not include anyother text or symbols in the output"

    pdf_path = "extract_images/input_docs/uploaded_pdf.pdf"
    with open(pdf_path, "wb") as f:
        f.write(pdf_file)

    images = []
    pdf_images = pdf_to_images(pdf_path)
    for page in pdf_images:
        img = Image.open(page).convert("RGB")
        response = gemini_model.generate_content([img, prompt], stream=False)
        response.resolve()
        print(response.text)

        if model == "gemini-pro-vision":
            page_bbox = ast.literal_eval(response.text)
        elif model == "gemini-1.5-flash-latest":
            page_bbox = parse_bboxs_gemini_flash(response.text)

        image = draw_boxes(page, page_bbox)
        images.append(image)
    return images


def extract_images_gpt(model, pdf_file):
    openai_api_key = os.getenv("OPENAI_API_KEY")
    openai.api_key = openai_api_key
    image_media_type = "image/png"

    pdf_path = "extract_images/input_docs/uploaded_pdf.pdf"
    with open(pdf_path, "wb") as f:
        f.write(pdf_file)

    images = convert_pdf_to_images(pdf_path)
    image_paths = pdf_to_images(pdf_path)

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {openai.api_key}",
    }

    extracted_images = []
    for page_idx, image in enumerate(images):
        base64_string = encode_image_to_base64(image)
        payload = {
            "model": model,
            "messages": [
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": "Extract bounding boxes of all the images present in this page. Return bounding boxes as liat of lists and don't provide any other text in the response.",
                        },
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{base64_string}"
                            },
                        },
                    ],
                }
            ],
        }

        response = requests.post(
            "https://api.openai.com/v1/chat/completions", headers=headers, json=payload
        )
        response_json = response.json()
        print(response_json["choices"][0]["message"]["content"])

        if "choices" in response_json and len(response_json["choices"]) > 0:
            extracted_images.append(
                draw_boxes(
                    image_paths[page_idx],
                    ast.literal_eval(response_json["choices"][0]["message"]["content"]),
                )
            )

    return extracted_images