Spaces:
Runtime error
Runtime error
File size: 5,407 Bytes
087df0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import glob
import os
import json
import torch
import random
import matplotlib.pyplot as plt
import numpy as np
from utils import create_ade20k_label_colormap
obj_label_map = torch.load('dataset/detection_features.pt')['labels']
coco_label_map = torch.load('dataset/coco_features.pt')['labels']
ade_color = create_ade20k_label_colormap()
file_path = 'helpers/images'
expert_path = 'helpers/labels'
plt.ioff()
def get_label_path(file_name, expert_name, with_suffix=False):
file_suffix = '.png' if not with_suffix else '_.png'
label_name = ''.join(file_name.split('.')[:-1] + [file_suffix])
label_path = os.path.join(expert_path, expert_name, label_name)
return label_path
def depth_prettify(file_name):
label_path = get_label_path(file_name, 'depth')
save_path = get_label_path(file_name, 'depth', True)
depth = plt.imread(label_path)
plt.imsave(save_path, depth, cmap='rainbow')
def obj_detection_prettify(file_name):
label_path = get_label_path(file_name, 'obj_detection')
save_path = get_label_path(file_name, 'obj_detection', True)
rgb = plt.imread(file_name)
obj_labels = plt.imread(label_path)
obj_labels_dict = json.load(open(label_path.replace('.png', '.json')))
plt.imshow(rgb)
num_objs = np.unique(obj_labels)[:-1].max()
plt.imshow(obj_labels, cmap='terrain', vmax=num_objs + 1 / 255., alpha=0.5)
for i in np.unique(obj_labels)[:-1]:
obj_idx_all = np.where(obj_labels == i)
obj_idx = random.randint(0, len(obj_idx_all[0]))
x, y = obj_idx_all[1][obj_idx], obj_idx_all[0][obj_idx]
obj_name = obj_label_map[obj_labels_dict[str(int(i * 255))]]
plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center')
plt.axis('off')
plt.savefig(save_path, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
def seg_prettify(file_name):
label_path = get_label_path(file_name, 'seg_coco')
save_path = get_label_path(file_name, 'seg_coco', True)
rgb = plt.imread(file_name)
seg_labels = plt.imread(label_path)
plt.imshow(rgb)
seg_map = np.zeros(list(seg_labels.shape) + [3], dtype=np.int16)
for i in np.unique(seg_labels):
seg_map[seg_labels == i] = ade_color[int(i * 255)]
plt.imshow(seg_map, alpha=0.5)
for i in np.unique(seg_labels):
obj_idx_all = np.where(seg_labels == i)
obj_idx = random.randint(0, len(obj_idx_all[0]))
x, y = obj_idx_all[1][obj_idx], obj_idx_all[0][obj_idx]
obj_name = coco_label_map[int(i * 255)]
plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center')
plt.axis('off')
plt.savefig(save_path, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
def ocr_detection_prettify(file_name):
label_path = get_label_path(file_name, 'ocr_detection')
save_path = get_label_path(file_name, 'ocr_detection', True)
if os.path.exists(label_path):
rgb = plt.imread(file_name)
ocr_labels = plt.imread(label_path)
ocr_labels_dict = torch.load(label_path.replace('.png', '.pt'))
plt.imshow(rgb)
plt.imshow((1 - ocr_labels) < 1, cmap='gray', alpha=0.8)
for i in np.unique(ocr_labels)[:-1]:
text_idx_all = np.where(ocr_labels == i)
x, y = text_idx_all[1].mean(), text_idx_all[0].mean()
text = ocr_labels_dict[int(i * 255)]['text']
plt.text(x, y, text, c='white', horizontalalignment='center', verticalalignment='center')
plt.axis('off')
plt.savefig(save_path, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
else:
rgb = plt.imread(file_name)
ocr_labels = np.ones_like(rgb, dtype=np.float32())
plt.imshow(rgb)
plt.imshow(ocr_labels, cmap='gray', alpha=0.8)
x, y = rgb.shape[1] / 2, rgb.shape[0] / 2
plt.text(x, y, 'No text detected', c='black', horizontalalignment='center', verticalalignment='center')
plt.axis('off')
plt.savefig(save_path, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
im_list = glob.glob(file_path + '/*.jpg') + glob.glob(file_path + '/*.png') + glob.glob(file_path + '/*.jpeg')
# prettify labels first:
for i in range(len(im_list)):
depth_prettify(im_list[i])
seg_prettify(im_list[i])
ocr_detection_prettify(im_list[i])
obj_detection_prettify(im_list[i])
pretty = {'depth': True, 'normal': False, 'edge': False,
'obj_detection': True, 'ocr_detection': True, 'seg_coco': True}
# plot expert labels
for im_path in im_list:
fig, axs = plt.subplots(1, 7, figsize=(20, 4))
rgb = plt.imread(im_path)
axs[0].imshow(rgb)
axs[0].axis('off')
axs[0].set_title('RGB')
for j in range(6):
label_name = list(pretty.keys())[j]
label_path = get_label_path(im_path, label_name, with_suffix=pretty[label_name])
label = plt.imread(label_path)
if label_name != 'edge':
axs[j + 1].imshow(label)
else:
axs[j + 1].imshow(label, cmap='gray')
axs[j + 1].axis('off')
axs[j + 1].set_title(label_name)
caption_path = ''.join(im_path.split('.')[:-1] + ['.txt'])
with open(caption_path) as f:
caption = f.readlines()[0]
plt.suptitle(caption)
plt.tight_layout()
plt.show()
|