File size: 5,837 Bytes
ad3ee60
 
19327c9
ad3ee60
 
 
 
45a5416
ad3ee60
 
359b3f0
ad3ee60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45a5416
 
 
 
ad3ee60
 
 
45a5416
 
 
 
 
ad3ee60
45a5416
ad3ee60
45a5416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad3ee60
 
 
45a5416
 
 
 
ad3ee60
45a5416
ad3ee60
45a5416
 
 
ad3ee60
45a5416
ad3ee60
45a5416
 
 
 
 
 
 
 
 
 
 
ad3ee60
45a5416
 
 
ad3ee60
 
 
45a5416
 
 
 
 
 
ad3ee60
45a5416
 
ad3ee60
45a5416
 
 
 
 
ad3ee60
45a5416
 
 
 
 
 
ad3ee60
45a5416
 
ad3ee60
45a5416
 
 
19327c9
45a5416
 
 
ad3ee60
 
 
 
 
 
 
 
 
 
 
 
45a5416
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import json
import random
import torch
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import shutil

from prismer.utils import create_ade20k_label_colormap
matplotlib.use('agg')

obj_label_map = torch.load('prismer/dataset/detection_features.pt')['labels']
coco_label_map = torch.load('prismer/dataset/coco_features.pt')['labels']
ade_color = create_ade20k_label_colormap()


def islight(rgb):
    r, g, b = rgb
    hsp = np.sqrt(0.299 * (r * r) + 0.587 * (g * g) + 0.114 * (b * b))
    if hsp > 127.5:
        return True
    else:
        return False


def depth_prettify(file_path):
    pretty_path = file_path.replace('.png', '_p.png')
    if not os.path.exists(pretty_path):
        depth = plt.imread(file_path)
        plt.imsave(pretty_path, depth, cmap='rainbow')


def obj_detection_prettify(rgb_path, path_name):
    pretty_path = path_name.replace('.png', '_p.png')
    if not os.path.exists(pretty_path):
        rgb = plt.imread(rgb_path)
        obj_labels = plt.imread(path_name)
        obj_labels_dict = json.load(open(path_name.replace('.png', '.json')))

        plt.imshow(rgb)

        if len(np.unique(obj_labels)) == 1:
            plt.axis('off')
            plt.savefig(path_name, bbox_inches='tight', transparent=True, pad_inches=0)
            plt.close()
        else:
            num_objs = np.unique(obj_labels)[:-1].max()
            plt.imshow(obj_labels, cmap='terrain', vmax=num_objs + 1 / 255., alpha=0.8)
            cmap = matplotlib.colormaps.get_cmap('terrain')
            for i in np.unique(obj_labels)[:-1]:
                obj_idx_all = np.where(obj_labels == i)
                x, y = obj_idx_all[1].mean(), obj_idx_all[0].mean()
                obj_name = obj_label_map[obj_labels_dict[str(int(i * 255))]]
                obj_name = obj_name.split(',')[0]
                if islight([c*255 for c in cmap(i / num_objs)[:3]]):
                    plt.text(x, y, obj_name, c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
                else:
                    plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)

            plt.axis('off')
            plt.savefig(pretty_path, bbox_inches='tight', transparent=True, pad_inches=0)
            plt.close()


def seg_prettify(rgb_path, file_name):
    pretty_path = file_name.replace('.png', '_p.png')
    if not os.path.exists(pretty_path):
        rgb = plt.imread(rgb_path)
        seg_labels = plt.imread(file_name)

        plt.imshow(rgb)

        seg_map = np.zeros(list(seg_labels.shape) + [3], dtype=np.int16)
        for i in np.unique(seg_labels):
            seg_map[seg_labels == i] = ade_color[int(i * 255)]

        plt.imshow(seg_map, alpha=0.8)

        for i in np.unique(seg_labels):
            obj_idx_all = np.where(seg_labels == i)
            if len(obj_idx_all[0]) > 20:  # only plot the label with its number of labelled pixel more than 20
                obj_idx = random.randint(0,  len(obj_idx_all[0]) - 1)
                x, y = obj_idx_all[1][obj_idx], obj_idx_all[0][obj_idx]
                obj_name = coco_label_map[int(i * 255)]
                obj_name = obj_name.split(',')[0]
                if islight(seg_map[int(y), int(x)]):
                    plt.text(x, y, obj_name, c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
                else:
                    plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)

        plt.axis('off')
        plt.savefig(pretty_path, bbox_inches='tight', transparent=True, pad_inches=0)
        plt.close()


def ocr_detection_prettify(rgb_path, file_name):
    pretty_path = file_name.replace('.png', '_p.png')
    if not os.path.exists(pretty_path):
        if os.path.exists(file_name):
            rgb = plt.imread(rgb_path)
            ocr_labels = plt.imread(file_name)
            ocr_labels_dict = torch.load(file_name.replace('.png', '.pt'))

            plt.imshow(rgb)
            plt.imshow(ocr_labels, cmap='gray', alpha=0.8)

            for i in np.unique(ocr_labels)[:-1]:
                text_idx_all = np.where(ocr_labels == i)
                x, y = text_idx_all[1].mean(), text_idx_all[0].mean()
                text = ocr_labels_dict[int(i * 255)]['text']
                plt.text(x, y, text, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)

            plt.axis('off')
            plt.savefig(pretty_path, bbox_inches='tight', transparent=True, pad_inches=0)
            plt.close()
        else:
            rgb = plt.imread(rgb_path)
            ocr_labels = np.ones_like(rgb, dtype=np.float32())

            plt.imshow(rgb)
            plt.imshow(ocr_labels, cmap='gray', alpha=0.8)

            x, y = rgb.shape[1] / 2, rgb.shape[0] / 2
            plt.text(x, y, 'No text detected', c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
            plt.axis('off')

            os.makedirs(os.path.dirname(file_name), exist_ok=True)
            plt.savefig(pretty_path, bbox_inches='tight', transparent=True, pad_inches=0)
            plt.close()


def label_prettify(rgb_path, expert_paths):
    for expert_path in expert_paths:
        if 'depth' in expert_path:
            depth_prettify(expert_path)
        elif 'seg' in expert_path:
            seg_prettify(rgb_path, expert_path)
        elif 'ocr' in expert_path:
            ocr_detection_prettify(rgb_path, expert_path)
        elif 'obj' in expert_path:
            obj_detection_prettify(rgb_path, expert_path)
        else:
            pretty_path = expert_path.replace('.png', '_p.png')
            if not os.path.exists(pretty_path):
                shutil.copyfile(expert_path, pretty_path)