Spaces:
Running
Running
File size: 2,872 Bytes
d6a3883 2f789a3 55292dd 2f789a3 70c38a6 2f789a3 55292dd fdab1ea 55292dd 0f6f16f 55292dd 8f0e5c7 55292dd 0f6f16f fdab1ea 5d30db9 55292dd 04a455f 00a12a3 04a455f fdab1ea 04a455f 5d30db9 2bf0ef1 8f0e5c7 cd58992 8f0e5c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# -*- coding: utf-8 -*-
import gradio as gr
import operator
import torch
from transformers import BertTokenizer, BertForMaskedLM
tokenizer = BertTokenizer.from_pretrained("shibing624/macbert4csc-base-chinese")
model = BertForMaskedLM.from_pretrained("shibing624/macbert4csc-base-chinese")
def ai_text(text):
with torch.no_grad():
outputs = model(**tokenizer([text], padding=True, return_tensors='pt'))
def to_highlight(corrected_sent, errs):
output = [{"entity": "纠错", "word": err[1], "start": err[2], "end": err[3]} for i, err in
enumerate(errs)]
return {"text": corrected_sent, "entities": output}
def get_errors(corrected_text, origin_text):
sub_details = []
for i, ori_char in enumerate(origin_text):
if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
# add unk word
corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
continue
if i >= len(corrected_text):
continue
if ori_char != corrected_text[i]:
if ori_char.lower() == corrected_text[i]:
# pass english upper char
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
continue
sub_details.append((ori_char, corrected_text[i], i, i + 1))
sub_details = sorted(sub_details, key=operator.itemgetter(2))
return corrected_text, sub_details
_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
corrected_text = _text[:len(text)]
corrected_text, details = get_errors(corrected_text, text)
print(text, ' => ', corrected_text, details)
return corrected_text + ' ' + str(details)
if __name__ == '__main__':
print(ai_text('少先队员因该为老人让坐'))
examples = [
['真麻烦你了。希望你们好好的跳无'],
['少先队员因该为老人让坐'],
['机七学习是人工智能领遇最能体现智能的一个分知'],
['今天心情很好'],
['他法语说的很好,的语也不错'],
['他们的吵翻很不错,再说他们做的咖喱鸡也好吃'],
]
input_text = gr.inputs.Textbox(lines=4, placeholder="Enter Query")
output_text = gr.outputs.Textbox()
gr.Interface(
ai_text,
inputs=input_text,
outputs='text',
title="Chinese Spelling Correction Model shibing624/macbert4csc-base-chinese",
description="Copy or input error Chinese text. Submit and the machine will correct text.",
article="Link to <a href='https://github.com/shibing624/pycorrector' style='color:blue;' target='_blank\'>Github REPO</a>",
examples=examples
).launch()
|