Spaces:
Running
Running
File size: 2,609 Bytes
2f789a3 55292dd 2f789a3 55292dd 2f789a3 55292dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
import operator
import torch
from transformers import BertTokenizer, BertForMaskedLM
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = BertTokenizer.from_pretrained("shibing624/macbert4csc-base-chinese")
model = BertForMaskedLM.from_pretrained("shibing624/macbert4csc-base-chinese")
model.to(device)
def ai_text(texts):
with torch.no_grad():
outputs = model(**tokenizer(texts, padding=True, return_tensors='pt').to(device))
def get_errors(corrected_text, origin_text):
sub_details = []
for i, ori_char in enumerate(origin_text):
if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
# add unk word
corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
continue
if i >= len(corrected_text):
continue
if ori_char != corrected_text[i]:
if ori_char.lower() == corrected_text[i]:
# pass english upper char
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
continue
sub_details.append((ori_char, corrected_text[i], i, i + 1))
sub_details = sorted(sub_details, key=operator.itemgetter(2))
return corrected_text, sub_details
result = []
for ids, text in zip(outputs.logits, texts):
_text = tokenizer.decode(torch.argmax(ids, dim=-1), skip_special_tokens=True).replace(' ', '')
corrected_text = _text[:len(text)]
corrected_text, details = get_errors(corrected_text, text)
print(text, ' => ', corrected_text, details)
result.append((corrected_text, details))
print(result)
return result
examples = [
['真麻烦你了。希望你们好好的跳无'],
['少先队员因该为老人让坐'],
['机七学习是人工智能领遇最能体现智能的一个分知'],
['今天心情很好',
'老是较书。'],
['遇到一位很棒的奴生跟我聊天。'],
['他的语说的很好,法语也不错'],
['他法语说的很好,的语也不错'],
['他们的吵翻很不错,再说他们做的咖喱鸡也好吃'],
['不过在许多传统国家,女人向未得到平等'],
]
output_text = gr.outputs.Textbox()
gr.Interface(ai_text, "textbox", output_text, title="Chinese Text Correction shibing624/macbert4csc-base-chinese",
description="Copy or input error Chinese text. Submit and the machine will correct text.", examples=examples).launch()
|