File size: 13,579 Bytes
2fbcf51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
"""SAMPLING ONLY."""

import torch
import numpy as np
from tqdm import tqdm
from functools import partial

from .diffusion_utils import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like

class DDIMSampler(object):
    def __init__(self, model, schedule="linear", **kwargs):
        super().__init__()
        self.model = model
        self.ddpm_num_timesteps = model.num_timesteps
        self.schedule = schedule

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
            if attr.device != torch.device("cuda"):
                attr = attr.to(torch.device("cuda"))
        setattr(self, name, attr)

    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, 
                                                  num_ddim_timesteps=ddim_num_steps,
                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,
                                                  verbose=verbose)
        alphas_cumprod = self.model.alphas_cumprod
        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)

        self.register_buffer('betas', to_torch(self.model.betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))

        # ddim sampling parameters
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
            alphacums=alphas_cumprod.cpu(),
            ddim_timesteps=self.ddim_timesteps,
            eta=ddim_eta,verbose=verbose)

        self.register_buffer('ddim_sigmas', ddim_sigmas)
        self.register_buffer('ddim_alphas', ddim_alphas)
        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)

    @torch.no_grad()
    def sample(self,
               steps,
               shape,
               x_info,
               c_info,
               eta=0.,
               temperature=1.,
               noise_dropout=0.,
               verbose=True,
               log_every_t=100,):

        self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose)
        print(f'Data shape for DDIM sampling is {shape}, eta {eta}')
        samples, intermediates = self.ddim_sampling(
            shape,
            x_info=x_info,
            c_info=c_info,
            noise_dropout=noise_dropout,
            temperature=temperature,
            log_every_t=log_every_t,)
        return samples, intermediates

    @torch.no_grad()
    def ddim_sampling(self, 
                      shape,
                      x_info,
                      c_info,
                      noise_dropout=0., 
                      temperature=1., 
                      log_every_t=100,):

        device = self.model.device
        dtype = c_info['conditioning'].dtype
        bs = shape[0]
        timesteps = self.ddim_timesteps
        if ('xt' in x_info) and (x_info['xt'] is not None):
            xt = x_info['xt'].astype(dtype).to(device)
            x_info['x'] = xt
        elif ('x0' in x_info) and (x_info['x0'] is not None):
            x0 = x_info['x0'].type(dtype).to(device)
            ts = timesteps[x_info['x0_forward_timesteps']].repeat(bs)
            ts = torch.Tensor(ts).long().to(device)
            timesteps = timesteps[:x_info['x0_forward_timesteps']]
            x0_nz = self.model.q_sample(x0, ts)
            x_info['x'] = x0_nz
        else:
            x_info['x'] = torch.randn(shape, device=device, dtype=dtype)
            
        intermediates = {'pred_xt': [], 'pred_x0': []}
        time_range = np.flip(timesteps)
        total_steps = timesteps.shape[0]

        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full((bs,), step, device=device, dtype=torch.long)

            outs = self.p_sample_ddim(
                x_info, c_info, ts, index, 
                noise_dropout=noise_dropout,
                temperature=temperature,)
            pred_xt, pred_x0 = outs
            x_info['x'] = pred_xt

            if index % log_every_t == 0 or index == total_steps - 1:
                intermediates['pred_xt'].append(pred_xt)
                intermediates['pred_x0'].append(pred_x0)

        return pred_xt, intermediates

    @torch.no_grad()
    def p_sample_ddim(self, x_info, c_info, t, index, 
                      repeat_noise=False, 
                      use_original_steps=False, 
                      noise_dropout=0.,
                      temperature=1.,):

        x = x_info['x']
        unconditional_guidance_scale = c_info['unconditional_guidance_scale']

        b, *_, device = *x.shape, x.device
        if unconditional_guidance_scale == 1.:
            c_info['c'] = c_info['conditioning']
            e_t = self.model.apply_model(x_info, t, c_info)
        else:
            x_in = torch.cat([x] * 2)
            t_in = torch.cat([t] * 2)
            c_in = torch.cat([c_info['unconditional_conditioning'], c_info['conditioning']])
            x_info['x'] = x_in
            c_info['c'] = c_in
            e_t_uncond, e_t = self.model.apply_model(x_info, t_in, c_info).chunk(2)
            e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
        # select parameters corresponding to the currently considered timestep

        extended_shape = [b] + [1]*(len(e_t.shape)-1) 
        a_t = torch.full(extended_shape, alphas[index], device=device, dtype=x.dtype)
        a_prev = torch.full(extended_shape, alphas_prev[index], device=device, dtype=x.dtype)
        sigma_t = torch.full(extended_shape, sigmas[index], device=device, dtype=x.dtype)
        sqrt_one_minus_at = torch.full(extended_shape, sqrt_one_minus_alphas[index], device=device, dtype=x.dtype)

        # current prediction for x_0
        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
        noise = sigma_t * noise_like(x, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
        return x_prev, pred_x0

    @torch.no_grad()
    def sample_multicontext(self,
                            steps,
                            shape,
                            x_info,
                            c_info_list,
                            eta=0.,
                            temperature=1.,
                            noise_dropout=0.,
                            verbose=True,
                            log_every_t=100,):

        self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose)
        print(f'Data shape for DDIM sampling is {shape}, eta {eta}')
        samples, intermediates = self.ddim_sampling_multicontext(
            shape,
            x_info=x_info,
            c_info_list=c_info_list,
            noise_dropout=noise_dropout,
            temperature=temperature,
            log_every_t=log_every_t,)
        return samples, intermediates

    @torch.no_grad()
    def ddim_sampling_multicontext(self, 
                                   shape,
                                   x_info,
                                   c_info_list,
                                   noise_dropout=0., 
                                   temperature=1., 
                                   log_every_t=100,):

        device = self.model.device
        dtype = c_info_list[0]['conditioning'].dtype
        bs = shape[0]
        timesteps = self.ddim_timesteps
        if ('xt' in x_info) and (x_info['xt'] is not None):
            xt = x_info['xt'].astype(dtype).to(device)
            x_info['x'] = xt
        elif ('x0' in x_info) and (x_info['x0'] is not None):
            x0 = x_info['x0'].type(dtype).to(device)
            ts = timesteps[x_info['x0_forward_timesteps']].repeat(bs)
            ts = torch.Tensor(ts).long().to(device)
            timesteps = timesteps[:x_info['x0_forward_timesteps']]
            x0_nz = self.model.q_sample(x0, ts)
            x_info['x'] = x0_nz
        else:
            x_info['x'] = torch.randn(shape, device=device, dtype=dtype)
            
        intermediates = {'pred_xt': [], 'pred_x0': []}
        time_range = np.flip(timesteps)
        total_steps = timesteps.shape[0]

        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full((bs,), step, device=device, dtype=torch.long)

            outs = self.p_sample_ddim_multicontext(
                x_info, c_info_list, ts, index, 
                noise_dropout=noise_dropout,
                temperature=temperature,)
            pred_xt, pred_x0 = outs
            x_info['x'] = pred_xt

            if index % log_every_t == 0 or index == total_steps - 1:
                intermediates['pred_xt'].append(pred_xt)
                intermediates['pred_x0'].append(pred_x0)

        return pred_xt, intermediates

    @torch.no_grad()
    def p_sample_ddim_multicontext(
            self, x_info, c_info_list, t, index, 
            repeat_noise=False, 
            use_original_steps=False, 
            noise_dropout=0.,
            temperature=1.,):

        x = x_info['x']
        b, *_, device = *x.shape, x.device
        unconditional_guidance_scale = None

        for c_info in c_info_list:
            if unconditional_guidance_scale is None:
                unconditional_guidance_scale = c_info['unconditional_guidance_scale']
            else:
                assert unconditional_guidance_scale==c_info['unconditional_guidance_scale'], \
                    "A different unconditional guidance scale between different context is not allowed!"

            if unconditional_guidance_scale == 1.:
                c_info['c'] = c_info['conditioning']
                
            else:
                c_in = torch.cat([c_info['unconditional_conditioning'], c_info['conditioning']])
                c_info['c'] = c_in

        if unconditional_guidance_scale == 1.:
            e_t = self.model.apply_model_multicontext(x_info, t, c_info_list)
        else:
            x_in = torch.cat([x] * 2)
            t_in = torch.cat([t] * 2)
            x_info['x'] = x_in
            e_t_uncond, e_t = self.model.apply_model_multicontext(x_info, t_in, c_info_list).chunk(2)
            e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
        # select parameters corresponding to the currently considered timestep

        extended_shape = [b] + [1]*(len(e_t.shape)-1) 
        a_t = torch.full(extended_shape, alphas[index], device=device, dtype=x.dtype)
        a_prev = torch.full(extended_shape, alphas_prev[index], device=device, dtype=x.dtype)
        sigma_t = torch.full(extended_shape, sigmas[index], device=device, dtype=x.dtype)
        sqrt_one_minus_at = torch.full(extended_shape, sqrt_one_minus_alphas[index], device=device, dtype=x.dtype)

        # current prediction for x_0
        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
        noise = sigma_t * noise_like(x, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
        return x_prev, pred_x0