File size: 5,290 Bytes
2fbcf51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn as nn
from functools import partial

# from ldm.modules.x_transformer import Encoder, TransformerWrapper  # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test


class AbstractEncoder(nn.Module):
    def __init__(self):
        super().__init__()

    def encode(self, *args, **kwargs):
        raise NotImplementedError



class ClassEmbedder(nn.Module):
    def __init__(self, embed_dim, n_classes=1000, key='class'):
        super().__init__()
        self.key = key
        self.embedding = nn.Embedding(n_classes, embed_dim)

    def forward(self, batch, key=None):
        if key is None:
            key = self.key
        # this is for use in crossattn
        c = batch[key][:, None]
        c = self.embedding(c)
        return c


class TransformerEmbedder(AbstractEncoder):
    """Some transformer encoder layers"""
    def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77):
        super().__init__()
        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
                                              attn_layers=Encoder(dim=n_embed, depth=n_layer))

    def forward(self, tokens):
        z = self.transformer(tokens, return_embeddings=True)
        return z

    def encode(self, x):
        return self(x)


class BERTTokenizer(AbstractEncoder):
    """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
    def __init__(self, device="cuda", vq_interface=True, max_length=77):
        super().__init__()
        from transformers import BertTokenizerFast  # TODO: add to reuquirements
        self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
        self.vq_interface = vq_interface
        self.max_length = max_length

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"]
        return tokens

    @torch.no_grad()
    def encode(self, text):
        tokens = self(text)
        if not self.vq_interface:
            return tokens
        return None, None, [None, None, tokens]

    def decode(self, text):
        return text


class BERTEmbedder(AbstractEncoder):
    """Uses the BERT tokenizr model and add some transformer encoder layers"""
    def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
                 ckpt_path=None, ignore_keys=[], device="cuda", use_tokenizer=True, embedding_dropout=0.0):
        super().__init__()
        self.use_tknz_fn = use_tokenizer
        if self.use_tknz_fn:
            self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
                                              attn_layers=Encoder(dim=n_embed, depth=n_layer),
                                              emb_dropout=embedding_dropout)
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)                                              

    def init_from_ckpt(self, path, ignore_keys=list()):
        sd = torch.load(path, map_location="cpu")
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        missing, unexpected = self.load_state_dict(sd, strict=False)
        print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")  

    def forward(self, text):
        if self.use_tknz_fn:
            tokens = self.tknz_fn(text)
        else:
            tokens = text
        device = self.transformer.token_emb.weight.device # a trick to get device
        tokens = tokens.to(device)
        z = self.transformer(tokens, return_embeddings=True)
        return z

    def encode(self, text):
        # output of length 77
        return self(text)


class SpatialRescaler(nn.Module):
    def __init__(self,
                 n_stages=1,
                 method='bilinear',
                 multiplier=0.5,
                 in_channels=3,
                 out_channels=None,
                 bias=False):
        super().__init__()
        self.n_stages = n_stages
        assert self.n_stages >= 0
        assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
        self.multiplier = multiplier
        self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
        self.remap_output = out_channels is not None
        if self.remap_output:
            print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
            self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)

    def forward(self,x):
        for stage in range(self.n_stages):
            x = self.interpolator(x, scale_factor=self.multiplier)


        if self.remap_output:
            x = self.channel_mapper(x)
        return x

    def encode(self, x):
        return self(x)