File size: 15,988 Bytes
2fbcf51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import torch
import torch.nn as nn
import functools

class ActNorm(nn.Module):
    def __init__(self, num_features, logdet=False, affine=True,
                 allow_reverse_init=False):
        assert affine
        super().__init__()
        self.logdet = logdet
        self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
        self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
        self.allow_reverse_init = allow_reverse_init

        self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))

    def initialize(self, input):
        with torch.no_grad():
            flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
            mean = (
                flatten.mean(1)
                .unsqueeze(1)
                .unsqueeze(2)
                .unsqueeze(3)
                .permute(1, 0, 2, 3)
            )
            std = (
                flatten.std(1)
                .unsqueeze(1)
                .unsqueeze(2)
                .unsqueeze(3)
                .permute(1, 0, 2, 3)
            )

            self.loc.data.copy_(-mean)
            self.scale.data.copy_(1 / (std + 1e-6))

    def forward(self, input, reverse=False):
        if reverse:
            return self.reverse(input)
        if len(input.shape) == 2:
            input = input[:,:,None,None]
            squeeze = True
        else:
            squeeze = False

        _, _, height, width = input.shape

        if self.training and self.initialized.item() == 0:
            self.initialize(input)
            self.initialized.fill_(1)

        h = self.scale * (input + self.loc)

        if squeeze:
            h = h.squeeze(-1).squeeze(-1)

        if self.logdet:
            log_abs = torch.log(torch.abs(self.scale))
            logdet = height*width*torch.sum(log_abs)
            logdet = logdet * torch.ones(input.shape[0]).to(input)
            return h, logdet

        return h

    def reverse(self, output):
        if self.training and self.initialized.item() == 0:
            if not self.allow_reverse_init:
                raise RuntimeError(
                    "Initializing ActNorm in reverse direction is "
                    "disabled by default. Use allow_reverse_init=True to enable."
                )
            else:
                self.initialize(output)
                self.initialized.fill_(1)

        if len(output.shape) == 2:
            output = output[:,:,None,None]
            squeeze = True
        else:
            squeeze = False

        h = output / self.scale - self.loc

        if squeeze:
            h = h.squeeze(-1).squeeze(-1)
        return h

#################
# Discriminator #
#################

def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)

class NLayerDiscriminator(nn.Module):
    """Defines a PatchGAN discriminator as in Pix2Pix
        --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
    """
    def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
        """Construct a PatchGAN discriminator
        Parameters:
            input_nc (int)  -- the number of channels in input images
            ndf (int)       -- the number of filters in the last conv layer
            n_layers (int)  -- the number of conv layers in the discriminator
            norm_layer      -- normalization layer
        """
        super(NLayerDiscriminator, self).__init__()
        if not use_actnorm:
            norm_layer = nn.BatchNorm2d
        else:
            norm_layer = ActNorm
        if type(norm_layer) == functools.partial:  # no need to use bias as BatchNorm2d has affine parameters
            use_bias = norm_layer.func != nn.BatchNorm2d
        else:
            use_bias = norm_layer != nn.BatchNorm2d

        kw = 4
        padw = 1
        sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, n_layers):  # gradually increase the number of filters
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** n, 8)
            sequence += [
                nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
                norm_layer(ndf * nf_mult),
                nn.LeakyReLU(0.2, True)
            ]

        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8)
        sequence += [
            nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
            norm_layer(ndf * nf_mult),
            nn.LeakyReLU(0.2, True)
        ]

        sequence += [
            nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]  # output 1 channel prediction map
        self.main = nn.Sequential(*sequence)

    def forward(self, input):
        """Standard forward."""
        return self.main(input)

#########
# LPIPS #
#########

class ScalingLayer(nn.Module):
    def __init__(self):
        super(ScalingLayer, self).__init__()
        self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
        self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])

    def forward(self, inp):
        return (inp - self.shift) / self.scale

class NetLinLayer(nn.Module):
    """ A single linear layer which does a 1x1 conv """
    def __init__(self, chn_in, chn_out=1, use_dropout=False):
        super(NetLinLayer, self).__init__()
        layers = [nn.Dropout(), ] if (use_dropout) else []
        layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
        self.model = nn.Sequential(*layers)

from collections import namedtuple
from torchvision import models
from torchvision.models import VGG16_Weights

class vgg16(torch.nn.Module):
    def __init__(self, requires_grad=False, pretrained=True):
        super(vgg16, self).__init__()
        if pretrained:
            vgg_pretrained_features = models.vgg16(weights=VGG16_Weights.IMAGENET1K_V1).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.N_slices = 5
        for x in range(4):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(4, 9):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(9, 16):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(16, 23):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(23, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h = self.slice1(X)
        h_relu1_2 = h
        h = self.slice2(h)
        h_relu2_2 = h
        h = self.slice3(h)
        h_relu3_3 = h
        h = self.slice4(h)
        h_relu4_3 = h
        h = self.slice5(h)
        h_relu5_3 = h
        vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
        out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
        return out

def normalize_tensor(x,eps=1e-10):
    norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True))
    return x/(norm_factor+eps)

def spatial_average(x, keepdim=True):
    return x.mean([2,3],keepdim=keepdim)

def get_ckpt_path(*args, **kwargs):
    return 'pretrained/lpips.pth'

class LPIPS(nn.Module):
    # Learned perceptual metric
    def __init__(self, use_dropout=True):
        super().__init__()
        self.scaling_layer = ScalingLayer()
        self.chns = [64, 128, 256, 512, 512]  # vg16 features
        self.net = vgg16(pretrained=True, requires_grad=False)
        self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
        self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
        self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
        self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
        self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
        self.load_from_pretrained()
        for param in self.parameters():
            param.requires_grad = False

    def load_from_pretrained(self, name="vgg_lpips"):
        ckpt = get_ckpt_path(name, "taming/modules/autoencoder/lpips")
        self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
        print("loaded pretrained LPIPS loss from {}".format(ckpt))

    @classmethod
    def from_pretrained(cls, name="vgg_lpips"):
        if name != "vgg_lpips":
            raise NotImplementedError
        model = cls()
        ckpt = get_ckpt_path(name)
        model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
        return model

    def forward(self, input, target):
        in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
        outs0, outs1 = self.net(in0_input), self.net(in1_input)
        feats0, feats1, diffs = {}, {}, {}
        lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
        for kk in range(len(self.chns)):
            feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
            diffs[kk] = (feats0[kk] - feats1[kk]) ** 2

        res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
        val = res[0]
        for l in range(1, len(self.chns)):
            val += res[l]
        return val

############
# The loss #
############

def adopt_weight(weight, global_step, threshold=0, value=0.):
    if global_step < threshold:
        weight = value
    return weight

def hinge_d_loss(logits_real, logits_fake):
    loss_real = torch.mean(F.relu(1. - logits_real))
    loss_fake = torch.mean(F.relu(1. + logits_fake))
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss

def vanilla_d_loss(logits_real, logits_fake):
    d_loss = 0.5 * (
        torch.mean(torch.nn.functional.softplus(-logits_real)) +
        torch.mean(torch.nn.functional.softplus(logits_fake)))
    return d_loss

class LPIPSWithDiscriminator(nn.Module):
    def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
                 disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
                 perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
                 disc_loss="hinge"):

        super().__init__()
        assert disc_loss in ["hinge", "vanilla"]
        self.kl_weight = kl_weight
        self.pixel_weight = pixelloss_weight
        self.perceptual_loss = LPIPS().eval()
        self.perceptual_weight = perceptual_weight
        # output log variance
        self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)

        self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
                                                 n_layers=disc_num_layers,
                                                 use_actnorm=use_actnorm
                                                 ).apply(weights_init)
        self.discriminator_iter_start = disc_start
        self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
        self.disc_factor = disc_factor
        self.discriminator_weight = disc_weight
        self.disc_conditional = disc_conditional

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
        if last_layer is not None:
            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
        else:
            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]

        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
        d_weight = d_weight * self.discriminator_weight
        return d_weight

    def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
                global_step, last_layer=None, cond=None, split="train",
                weights=None):
        rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
        if self.perceptual_weight > 0:
            p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
            rec_loss = rec_loss + self.perceptual_weight * p_loss

        nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
        weighted_nll_loss = nll_loss
        if weights is not None:
            weighted_nll_loss = weights*nll_loss
        weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
        nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
        kl_loss = posteriors.kl()
        kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]

        # now the GAN part
        if optimizer_idx == 0:
            # generator update
            if cond is None:
                assert not self.disc_conditional
                logits_fake = self.discriminator(reconstructions.contiguous())
            else:
                assert self.disc_conditional
                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
            g_loss = -torch.mean(logits_fake)

            if self.disc_factor > 0.0:
                try:
                    d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
                except RuntimeError:
                    assert not self.training
                    d_weight = torch.tensor(0.0)
            else:
                d_weight = torch.tensor(0.0)

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss

            log = {"Loss": loss.clone().detach().mean(), 
                   "logvar": self.logvar.detach(),
                   "loss_kl": kl_loss.detach().mean(), 
                   "loss_nll": nll_loss.detach().mean(),
                   "loss_rec": rec_loss.detach().mean(),
                   "d_weight": d_weight.detach(),
                   "disc_factor": torch.tensor(disc_factor),
                   "loss_g": g_loss.detach().mean(),
                   }
            return loss, log

        if optimizer_idx == 1:
            # second pass for discriminator update
            if cond is None:
                logits_real = self.discriminator(inputs.contiguous().detach())
                logits_fake = self.discriminator(reconstructions.contiguous().detach())
            else:
                logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)

            log = {"Loss": d_loss.clone().detach().mean(),
                   "loss_disc": d_loss.clone().detach().mean(),
                   "logits_real": logits_real.detach().mean(),
                   "logits_fake": logits_fake.detach().mean()
                   }
            return d_loss, log