File size: 8,502 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from transformers import AutoConfig, AutoModelForCausalLM
from transformers import LlamaConfig, LlamaModel, LlamaForCausalLM


from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from dataclasses import dataclass
from ..ola_arch import OlaLlavaMetaModel, OlaLlavaMetaForCausalLM

from ola_vlm.model.aux_heads import GenHead, DepthHead, DAv2_Head
from ola_vlm.model.aux_heads.depth_anything_v2.dpt import DepthAnythingV2
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead, OneFormerSegHead

from transformers import OneFormerProcessor

from diffusers import (
    DPMSolverMultistepScheduler,
    StableUnCLIPImg2ImgPipeline,
)

import torch.distributed as dist
try:
    import wandb
except:
    pass
import os
import matplotlib

from ola_vlm.model.language_model.base_probe_vlm import BaseProbe_VLM

@dataclass
class ProbeDSGCausalLLMOutputWithPast(CausalLMOutputWithPast):
    image_embs: Optional[Tuple[torch.FloatTensor]] = None
    seg_embs: Optional[Tuple[torch.FloatTensor]] = None
    depth_embs: Optional[Tuple[torch.FloatTensor]] = None
    depth_preds: Optional[Tuple[torch.FloatTensor]] = None


class ProbeDSGLlavaLlamaConfig(LlamaConfig):
    model_type = "probe_dsg_llava_llama"


class ProbeDSGLlavaLlamaModel(OlaLlavaMetaModel, LlamaModel):
    config_class = ProbeDSGLlavaLlamaConfig

    def __init__(self, config: LlamaConfig):
        super(ProbeDSGLlavaLlamaModel, self).__init__(config)


class ProbeDSGLlavaLlamaForCausalLM(LlamaForCausalLM, OlaLlavaMetaForCausalLM, BaseProbe_VLM):
    config_class = ProbeDSGLlavaLlamaConfig

    def __init__(self, config):
        super(LlamaForCausalLM, self).__init__(config)
        config.rope_scaling = None
        self.model = ProbeDSGLlavaLlamaModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
    
    def _forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        pil_images = None,
        
    ) -> Union[Tuple, ProbeDSGCausalLLMOutputWithPast]:
        
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        with torch.no_grad():
            # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
            outputs = self.model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=True,
                return_dict=return_dict,
            )

        hidden_states = outputs[0]

        layer_states = outputs[-1][1:]

        logits = self.lm_head(hidden_states)
        logits = logits.float()

        log_dict = {}
        
        seg_embs, seg_loss, seg_log_dict = self.seg_emb_forward(pil_images, hidden_states, layer_states)
        if self.mode == "seg":
            if pil_images is not None:
                if dist.get_rank() == 0:
                    log_dict = {
                        **log_dict,
                        **seg_log_dict
                    }
        
        depth_preds, depth_embs, depth_loss, depth_log_dict = self.depth_emb_forward(pil_images, layer_states)
        if self.mode == "depth" and hidden_states.shape[1] > 1:
            if dist.get_rank() == 0:
                log_dict = {
                    **log_dict,
                    **depth_log_dict
                }

        img_embs, gen_loss, log_dict = self.gen_emb_forward(pil_images, hidden_states, layer_states)
        if self.mode == "gen" and hidden_states.shape[1] > 1:
            if dist.get_rank() == 0:
                log_dict = {
                    **log_dict,
                    **depth_log_dict
                }
        
        loss = seg_loss + depth_loss + gen_loss

        try:
            if dist.get_rank() == 0:
                log_dict = {
                    **log_dict,
                    "depth_loss": depth_loss,
                    "gen_loss": gen_loss,
                    "seg_loss": seg_loss,
                }
                filtered_log_dict = {key: value for key, value in log_dict.items() if value > 0}
                wandb.log(filtered_log_dict)
                self.steps += 1
        except:
            pass
        
        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return ProbeDSGCausalLLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_embs=img_embs,
            seg_embs=seg_embs,
            depth_embs=depth_embs,
            depth_preds=depth_preds,
        )    
    
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        image_sizes: Optional[List[List[int]]] = None,
        return_dict: Optional[bool] = None,
        pil_images: Optional[List[object]] = None,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
                _
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
                image_sizes
            )

        return self._forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            pil_images=pil_images
        )

AutoConfig.register("probe_dsg_llava_llama", ProbeDSGLlavaLlamaConfig)
AutoModelForCausalLM.register(ProbeDSGLlavaLlamaConfig, ProbeDSGLlavaLlamaForCausalLM)