File size: 9,359 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn

from transformers import AutoConfig, AutoModelForCausalLM, \
                         Phi3Config, Phi3Model, Phi3ForCausalLM

from transformers.modeling_outputs import CausalLMOutputWithPast
from dataclasses import dataclass

from ..ola_arch import OlaLlavaMetaModel, OlaLlavaMetaForCausalLM

import torch.distributed as dist
try:
    import wandb
except:
    pass
import os
from torch.nn import CrossEntropyLoss
from .base_lm import BaseCausalLM
from .base_ola_vlm import BaseOLA_VLM

@dataclass
class OlaCausalLLMOutputWithPast(CausalLMOutputWithPast):
    image_embs: Optional[Tuple[torch.FloatTensor]] = None
    seg_embs: Optional[Tuple[torch.FloatTensor]] = None
    depth_embs: Optional[Tuple[torch.FloatTensor]] = None
    depth_preds: Optional[Tuple[torch.FloatTensor]] = None


class OlaLlavaPhi3Config(Phi3Config):
    model_type = "ola_phi3"


class OlaLlavaPhi3Model(OlaLlavaMetaModel, Phi3Model):
    config_class = OlaLlavaPhi3Config

    def __init__(self, config: Phi3Config):
        super(OlaLlavaPhi3Model, self).__init__(config)


class OlaLlavaPhi3ForCausalLM(Phi3ForCausalLM, OlaLlavaMetaForCausalLM, BaseOLA_VLM):
    config_class = OlaLlavaPhi3Config

    def __init__(self, config):
        super(Phi3ForCausalLM, self).__init__(config)
        self.model = OlaLlavaPhi3Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.config = config
        self.is_use_reference_model = False
        self.NUM_SYS_TOKENS = 13

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def _forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        pil_images = None,
        gen_mask: Optional[torch.FloatTensor] = None,
        seg_mask: Optional[torch.FloatTensor] = None,
        depth_mask: Optional[torch.FloatTensor] = None,
        
    ) -> Union[Tuple, OlaCausalLLMOutputWithPast]:
        
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=True,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]

        layer_states = outputs[-1][1:]

        logits = self.lm_head(hidden_states)
        logits = logits.float()

        text_loss = None
        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            text_loss = loss_fct(shift_logits, shift_labels)

        
        dinov2_emb, dinov2_loss = self.dinov2_emb_forward(pil_images, layer_states, hidden_states, seg_mask)
        depth_preds, depth_embs, depth_loss, depth_l1_loss, depth_cont_loss = self.depth_emb_forward(pil_images, layer_states, depth_mask)
        seg_embs, seg_loss, seg_l1_loss, seg_contrastive_loss = self.seg_emb_forward(pil_images, hidden_states, layer_states, seg_mask)
        img_embs, gen_loss, gen_mse_loss, gen_con_loss = self.gen_emb_forward(pil_images, hidden_states, layer_states, gen_mask)
            

        if text_loss is not None:
            loss = text_loss + seg_loss + depth_loss + gen_loss + dinov2_loss
        
        try:
            if dist.get_rank() == 0:
                if loss > text_loss:
                    log_dict = {
                        "depth_loss": depth_loss,
                        "gen_loss": gen_loss,
                        "depth_l1_loss": depth_l1_loss,
                        "depth_contrastive_loss": depth_cont_loss,
                        "dinov2_loss": dinov2_loss,
                        "gen_mse_loss": gen_mse_loss,
                        "gen_contrastive_loss": gen_con_loss,
                        "seg_loss": seg_loss,
                        "seg_l1_loss": seg_l1_loss,
                        "seg_cosine-emb_loss": seg_ce_loss,
                        "seg_contrastive_loss": seg_contrastive_loss,
                        "text_loss": text_loss,
                        "loss": loss,
                    }
                    filtered_log_dict = {key: value for key, value in log_dict.items() if value > 0}
                    wandb.log(filtered_log_dict)
                else:
                    wandb.log({
                        "text_loss": text_loss,
                        "loss": loss,
                    })

                self.steps += 1
        except:
            pass
        
        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return OlaCausalLLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_embs=img_embs,
            seg_embs=seg_embs,
            depth_embs=depth_embs,
            depth_preds=depth_preds,
        )    
    
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        image_sizes: Optional[List[List[int]]] = None,
        return_dict: Optional[bool] = None,
        pil_images: Optional[List[object]] = None,
        gen_mask: Optional[torch.FloatTensor] = None,
        seg_mask: Optional[torch.FloatTensor] = None,
        depth_mask: Optional[torch.FloatTensor] = None,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
                image_sizes
            )

        return self._forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            pil_images=pil_images,
            gen_mask=gen_mask,
            seg_mask=seg_mask,
            depth_mask=depth_mask,
        )

AutoConfig.register("ola_phi3", OlaLlavaPhi3Config)
AutoModelForCausalLM.register(OlaLlavaPhi3Config, OlaLlavaPhi3ForCausalLM)