Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,832 Bytes
c3f3b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from cumo.conversation import conv_templates, SeparatorStyle
from cumo.model.builder import load_pretrained_model
from cumo.utils import disable_torch_init
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from datasets import load_dataset, concatenate_datasets
from cumo.eval.mmmu_utils.data_utils import load_yaml, save_json, CAT_SHORT2LONG
from cumo.eval.mmmu_utils.eval_utils import parse_multi_choice_response, parse_open_response
from PIL import Image
import math
import re
def process_single_sample(data):
question = data['question']
o_imgs_paths = []
for option in data['options']:
current_o_imgs_paths = re.findall("<img='(.*?)'>", option)
for img_path in current_o_imgs_paths:
o_imgs_paths.append(img_path)
if len(o_imgs_paths) > 1: # multiple images in options, used for random selection
return {'id': data['id'], 'question': question, 'options': data['options'], 'answer': data['answer'],
'image': None, 'question_type': data['question_type']}
else:
return {'id': data['id'], 'question': question, 'options': data['options'], 'answer': data['answer'],
'image': data['image_1'], 'question_type': data['question_type']}
def construct_prompt(sample):
question = sample['question']
options = eval(sample['options'])
example = ""
if sample['question_type'] == 'multiple-choice':
start_chr = 'A'
prediction_range = []
index2ans = {}
for option in options:
prediction_range.append(start_chr)
example += f"({start_chr}) {option}\n"
index2ans[start_chr] = option
start_chr = chr(ord(start_chr) + 1)
empty_prompt = question + '\n' + example + '\n' + "Answer with the option's letter from the given choices directly"
res_dict = {}
res_dict['index2ans'] = index2ans
res_dict['correct_choice'] = sample['answer']
res_dict['all_choices'] = prediction_range
res_dict['empty_prompt'] = empty_prompt
res_dict['final_input_prompt'] = empty_prompt
res_dict['gt_content'] = options[ord(sample['answer'].upper()) - ord('A')]
else:
empty_prompt = question + '\n' + "Answer the question using a single word or phrase."
res_dict = {}
res_dict['empty_prompt'] = empty_prompt
res_dict['final_input_prompt'] = empty_prompt
res_dict['gt_content'] = sample['answer']
res_dict.update(sample)
return res_dict
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
model.config.training = False
# run for each subject
sub_dataset_list = []
for subject in CAT_SHORT2LONG.values():
print("loading ", subject)
sub_dataset = load_dataset(args.data_path, subject, split=args.split)
sub_dataset_list.append(sub_dataset)
# merge all dataset
dataset = concatenate_datasets(sub_dataset_list)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
out_samples = dict()
for sample in tqdm(dataset, total=len(dataset)):
sample = process_single_sample(sample)
sample = construct_prompt(sample)
qs = sample['final_input_prompt'].replace('<image 1>', '').strip()
if sample['image'] is not None:
image_tensor = process_images([sample['image'].convert('RGB')], image_processor, model.config)[0]
images = image_tensor.unsqueeze(0).half().cuda()
image_sizes = [sample['image'].size]
if getattr(model.config, 'mm_use_im_start_end', False):
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
else:
images = None
image_sizes = None
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images,
image_sizes=image_sizes,
do_sample=True if args.temperature > 0 else False,
#temperature=args.temperature,
max_new_tokens=1024,
pad_token_id=tokenizer.eos_token_id,
use_cache=True,
)
response = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
if sample['question_type'] == 'multiple-choice':
pred_ans = parse_multi_choice_response(response, sample['all_choices'], sample['index2ans'])
else: # open question
pred_ans = response
out_samples[sample['id']] = pred_ans
save_json(answers_file, out_samples)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.json")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_v0")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument('--data_path', type=str, default="MMMU/MMMU") # hf dataset path.
parser.add_argument('--split', type=str, default='validation')
parser.add_argument("--answer-prompter", action="store_true")
parser.add_argument("--single-pred-prompt", action="store_true")
args = parser.parse_args()
eval_model(args)
|