File size: 23,349 Bytes
723d961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------

import torch
import torch.nn as nn
import numpy as np
import math
from timm.models.vision_transformer import PatchEmbed, Mlp
from timm.models.layers import trunc_normal_
import math


def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., num_patches=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.rel_pos_bias = RelativePositionBias(
            window_size=[int(num_patches**0.5), int(num_patches**0.5)], num_heads=num_heads)

    def get_masked_rel_bias(self, B, ids_keep):
        # get masked rel_pos_bias
        rel_pos_bias = self.rel_pos_bias()
        rel_pos_bias = rel_pos_bias.unsqueeze(dim=0).repeat(B, 1, 1, 1)

        rel_pos_bias_masked = torch.gather(
            rel_pos_bias, dim=2, index=ids_keep.unsqueeze(dim=1).unsqueeze(dim=-1).repeat(1, rel_pos_bias.shape[1], 1, rel_pos_bias.shape[-1]))
        rel_pos_bias_masked = torch.gather(
            rel_pos_bias_masked, dim=3, index=ids_keep.unsqueeze(dim=1).unsqueeze(dim=2).repeat(1, rel_pos_bias.shape[1], ids_keep.shape[1], 1))
        return rel_pos_bias_masked

    def forward(self, x, ids_keep=None):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C //
                                  self.num_heads).permute(2, 0, 3, 1, 4)
        # make torchscript happy (cannot use tensor as tuple)
        q, k, v = qkv[0], qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        if ids_keep is not None:
            rp_bias = self.get_masked_rel_bias(B, ids_keep)
        else:
            rp_bias = self.rel_pos_bias()
        attn += rp_bias
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class RelativePositionBias(nn.Module):
    # https://github.com/microsoft/unilm/blob/master/beit/modeling_finetune.py
    def __init__(self, window_size, num_heads):
        super().__init__()
        self.window_size = window_size
        self.num_relative_distance = (
            2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros(self.num_relative_distance, num_heads))

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(window_size[0])
        coords_w = torch.arange(window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
        coords_flatten = torch.flatten(coords, 1)
        relative_coords = coords_flatten[:, :, None] - \
            coords_flatten[:, None, :]
        relative_coords = relative_coords.permute(
            1, 2, 0).contiguous() 
        relative_coords[:, :, 0] += window_size[0] - 1
        relative_coords[:, :, 1] += window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * window_size[1] - 1
        relative_position_index = \
            torch.zeros(
                size=(window_size[0] * window_size[1],) * 2, dtype=relative_coords.dtype)
        relative_position_index = relative_coords.sum(-1)

        self.register_buffer("relative_position_index",
                             relative_position_index)

        trunc_normal_(self.relative_position_bias_table, std=.02)

    def forward(self):
        relative_position_bias = \
            self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        # nH, Wh*Ww, Wh*Ww
        return relative_position_bias.permute(2, 0, 1).contiguous()

#################################################################################
#               Embedding Layers for Timesteps and Class Labels                 #
#################################################################################


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) * torch.arange(start=0,
                                                 end=half, dtype=torch.float32) / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat(
                [embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


class LabelEmbedder(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """

    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(
            num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0]) < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1

        labels = torch.where(drop_ids.to(labels.device),
                             self.num_classes, labels)
        return labels

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


#################################################################################
#                                 Core MDT Model                                #
#################################################################################

class MDTBlock(nn.Module):
    """
    A MDT block with adaptive layer norm zero (adaLN-Zero) conMDTioning.
    """

    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
        super().__init__()
        self.norm1 = nn.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6)
        self.attn = Attention(
            hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
        self.norm2 = nn.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6)
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        def approx_gelu(): return nn.GELU(approximate="tanh")
        self.mlp = Mlp(in_features=hidden_size,
                       hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        )

    def forward(self, x, c, ids_keep=None):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
            c).chunk(6, dim=1)
        x = x + gate_msa.unsqueeze(1) * self.attn(
            modulate(self.norm1(x), shift_msa, scale_msa), ids_keep=ids_keep)
        x = x + \
            gate_mlp.unsqueeze(
                1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
        return x


class FinalLayer(nn.Module):
    """
    The final layer of MDT.
    """

    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(
            hidden_size, patch_size * patch_size * out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class MDT(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        num_classes=1000,
        learn_sigma=True,
        mask_ratio=None,
        decode_layer=None,
    ):
        super().__init__()
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads

        self.x_embedder = PatchEmbed(
            input_size, patch_size, in_channels, hidden_size, bias=True)
        self.t_embedder = TimestepEmbedder(hidden_size)
        self.y_embedder = LabelEmbedder(
            num_classes, hidden_size, class_dropout_prob)
        num_patches = self.x_embedder.num_patches
        # Will use learnbale sin-cos embedding:
        self.pos_embed = nn.Parameter(torch.zeros(
            1, num_patches, hidden_size), requires_grad=True)

        self.blocks = nn.ModuleList([
            MDTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, num_patches=num_patches) for _ in range(depth)
        ])
        self.sideblocks = nn.ModuleList([
            MDTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, num_patches=num_patches) for _ in range(1)
        ])
        self.final_layer = FinalLayer(
            hidden_size, patch_size, self.out_channels)

        self.decoder_pos_embed = nn.Parameter(torch.zeros(
            1, num_patches, hidden_size), requires_grad=True)
        if mask_ratio is not None:
            self.mask_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
            self.mask_ratio = float(mask_ratio)
            self.decode_layer = int(decode_layer)
        else:
            self.mask_token = nn.Parameter(torch.zeros(
                1, 1, hidden_size), requires_grad=False)
            self.mask_ratio = None
            self.decode_layer = int(decode_layer)
        print("mask ratio:", self.mask_ratio,
              "decode_layer:", self.decode_layer)
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

        # Initialize pos_embed by sin-cos embedding:
        pos_embed = get_2d_sincos_pos_embed(
            self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
        self.pos_embed.data.copy_(
            torch.from_numpy(pos_embed).float().unsqueeze(0))

        decoder_pos_embed = get_2d_sincos_pos_embed(
            self.decoder_pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
        self.decoder_pos_embed.data.copy_(
            torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        nn.init.constant_(self.x_embedder.proj.bias, 0)

        # Initialize label embedding table:
        nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in MDT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        for block in self.sideblocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

        if self.mask_ratio is not None:
            torch.nn.init.normal_(self.mask_token, std=.02)

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        h = w = int(x.shape[1] ** 0.5)
        assert h * w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
        return imgs

    def random_masking(self, x, mask_ratio):
        """
        Perform per-sample random masking by per-sample shuffling.
        Per-sample shuffling is done by argsort random noise.
        x: [N, L, D], sequence
        """
        N, L, D = x.shape  # batch, length, dim
        len_keep = int(L * (1 - mask_ratio))

        noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]

        # sort noise for each sample
        # ascend: small is keep, large is remove
        ids_shuffle = torch.argsort(noise, dim=1)
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        # keep the first subset
        ids_keep = ids_shuffle[:, :len_keep]
        x_masked = torch.gather(
            x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))

        # generate the binary mask: 0 is keep, 1 is remove
        mask = torch.ones([N, L], device=x.device)
        mask[:, :len_keep] = 0
        # unshuffle to get the binary mask
        mask = torch.gather(mask, dim=1, index=ids_restore)

        return x_masked, mask, ids_restore, ids_keep

    def forward_side_interpolater(self, x, c, mask, ids_restore):
        # append mask tokens to sequence
        mask_tokens = self.mask_token.repeat(
            x.shape[0], ids_restore.shape[1] - x.shape[1], 1)
        x_ = torch.cat([x, mask_tokens], dim=1)
        x = torch.gather(
            x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]))  # unshuffle
        
        # add pos embed
        x = x + self.decoder_pos_embed

        # pass to the basic block
        x_before = x
        for sideblock in self.sideblocks:
            x = sideblock(x, c, ids_keep=None)
        
        # masked shortcut
        mask = mask.unsqueeze(dim=-1)
        x = x*mask + (1-mask)*x_before

        return x

    def forward(self, x, t, y, enable_mask=False):
        """
        Forward pass of MDT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        enable_mask: Use mask latent modeling
        """
        x = self.x_embedder(
            x) + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2

        t = self.t_embedder(t)                   # (N, D)
        y = self.y_embedder(y, self.training)    # (N, D)
        c = t + y                                # (N, D)

        masked_stage = False

        # masking op for training
        if self.mask_ratio is not None and enable_mask:
            # masking: length -> length * mask_ratio
            x, mask, ids_restore, ids_keep = self.random_masking(
                x, self.mask_ratio)
            masked_stage = True

        for i in range(len(self.blocks)):
            if i == (len(self.blocks) - self.decode_layer):
                if self.mask_ratio is not None and enable_mask:
                    x = self.forward_side_interpolater(x, c, mask, ids_restore)
                    masked_stage = False
                else:
                    # add pos embed
                    x = x + self.decoder_pos_embed

            block = self.blocks[i]
            if masked_stage:
                x = block(x, c, ids_keep=ids_keep)
            else:
                x = block(x, c, ids_keep=None)

        # (N, T, patch_size ** 2 * out_channels)
        x = self.final_layer(x, c)
        x = self.unpatchify(x)                   # (N, out_channels, H, W)
        return x


    def forward_with_cfg(self, x, t, y, cfg_scale=None, diffusion_steps=1000, scale_pow=4.0):
        """
        Forward pass of MDT, but also batches the unconditional forward pass for classifier-free guidance.
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        if cfg_scale is not None:
            half = x[: len(x) // 2]
            combined = torch.cat([half, half], dim=0)
            model_out = self.forward(combined, t, y)
            eps, rest = model_out[:, :3], model_out[:, 3:]
            cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)

            scale_step = (
                1-torch.cos(((1-t/diffusion_steps)**scale_pow)*math.pi))*1/2 # power-cos scaling 
            real_cfg_scale = (cfg_scale-1)*scale_step + 1
            real_cfg_scale = real_cfg_scale[: len(x) // 2].view(-1, 1, 1, 1)

            half_eps = uncond_eps + real_cfg_scale * (cond_eps - uncond_eps)
            eps = torch.cat([half_eps, half_eps], dim=0)
            return torch.cat([eps, rest], dim=1)
        else:
            model_out = self.forward(x, t, y)
            eps, rest = model_out[:, :3], model_out[:, 3:]
            return torch.cat([eps, rest], dim=1)


#################################################################################
#                   Sine/Cosine Positional Embedding Functions                  #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py


def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate(
            [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(
        embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(
        embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


#################################################################################
#                                   MDT Configs                                  #
#################################################################################

def MDT_XL_2(**kwargs):
    return MDT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)


def MDT_XL_4(**kwargs):
    return MDT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)


def MDT_XL_8(**kwargs):
    return MDT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)


def MDT_L_2(**kwargs):
    return MDT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)


def MDT_L_4(**kwargs):
    return MDT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)


def MDT_L_8(**kwargs):
    return MDT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)


def MDT_B_2(**kwargs):
    return MDT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)


def MDT_B_4(**kwargs):
    return MDT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)


def MDT_B_8(**kwargs):
    return MDT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)


def MDT_S_2(**kwargs):
    return MDT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)


def MDT_S_4(**kwargs):
    return MDT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)


def MDT_S_8(**kwargs):
    return MDT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)