Spaces:
Runtime error
Runtime error
File size: 23,349 Bytes
723d961 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import torch
import torch.nn as nn
import numpy as np
import math
from timm.models.vision_transformer import PatchEmbed, Mlp
from timm.models.layers import trunc_normal_
import math
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., num_patches=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.rel_pos_bias = RelativePositionBias(
window_size=[int(num_patches**0.5), int(num_patches**0.5)], num_heads=num_heads)
def get_masked_rel_bias(self, B, ids_keep):
# get masked rel_pos_bias
rel_pos_bias = self.rel_pos_bias()
rel_pos_bias = rel_pos_bias.unsqueeze(dim=0).repeat(B, 1, 1, 1)
rel_pos_bias_masked = torch.gather(
rel_pos_bias, dim=2, index=ids_keep.unsqueeze(dim=1).unsqueeze(dim=-1).repeat(1, rel_pos_bias.shape[1], 1, rel_pos_bias.shape[-1]))
rel_pos_bias_masked = torch.gather(
rel_pos_bias_masked, dim=3, index=ids_keep.unsqueeze(dim=1).unsqueeze(dim=2).repeat(1, rel_pos_bias.shape[1], ids_keep.shape[1], 1))
return rel_pos_bias_masked
def forward(self, x, ids_keep=None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C //
self.num_heads).permute(2, 0, 3, 1, 4)
# make torchscript happy (cannot use tensor as tuple)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
if ids_keep is not None:
rp_bias = self.get_masked_rel_bias(B, ids_keep)
else:
rp_bias = self.rel_pos_bias()
attn += rp_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class RelativePositionBias(nn.Module):
# https://github.com/microsoft/unilm/blob/master/beit/modeling_finetune.py
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (
2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads))
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - \
coords_flatten[:, None, :]
relative_coords = relative_coords.permute(
1, 2, 0).contiguous()
relative_coords[:, :, 0] += window_size[0] - 1
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
torch.zeros(
size=(window_size[0] * window_size[1],) * 2, dtype=relative_coords.dtype)
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index",
relative_position_index)
trunc_normal_(self.relative_position_bias_table, std=.02)
def forward(self):
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
# nH, Wh*Ww, Wh*Ww
return relative_position_bias.permute(2, 0, 1).contiguous()
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0,
end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(
num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0]) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids.to(labels.device),
self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
#################################################################################
# Core MDT Model #
#################################################################################
class MDTBlock(nn.Module):
"""
A MDT block with adaptive layer norm zero (adaLN-Zero) conMDTioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = Attention(
hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
self.norm2 = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
def approx_gelu(): return nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size,
hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
def forward(self, x, c, ids_keep=None):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
c).chunk(6, dim=1)
x = x + gate_msa.unsqueeze(1) * self.attn(
modulate(self.norm1(x), shift_msa, scale_msa), ids_keep=ids_keep)
x = x + \
gate_mlp.unsqueeze(
1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
class FinalLayer(nn.Module):
"""
The final layer of MDT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(
hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class MDT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True,
mask_ratio=None,
decode_layer=None,
):
super().__init__()
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.x_embedder = PatchEmbed(
input_size, patch_size, in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbedder(hidden_size)
self.y_embedder = LabelEmbedder(
num_classes, hidden_size, class_dropout_prob)
num_patches = self.x_embedder.num_patches
# Will use learnbale sin-cos embedding:
self.pos_embed = nn.Parameter(torch.zeros(
1, num_patches, hidden_size), requires_grad=True)
self.blocks = nn.ModuleList([
MDTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, num_patches=num_patches) for _ in range(depth)
])
self.sideblocks = nn.ModuleList([
MDTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, num_patches=num_patches) for _ in range(1)
])
self.final_layer = FinalLayer(
hidden_size, patch_size, self.out_channels)
self.decoder_pos_embed = nn.Parameter(torch.zeros(
1, num_patches, hidden_size), requires_grad=True)
if mask_ratio is not None:
self.mask_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
self.mask_ratio = float(mask_ratio)
self.decode_layer = int(decode_layer)
else:
self.mask_token = nn.Parameter(torch.zeros(
1, 1, hidden_size), requires_grad=False)
self.mask_ratio = None
self.decode_layer = int(decode_layer)
print("mask ratio:", self.mask_ratio,
"decode_layer:", self.decode_layer)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize pos_embed by sin-cos embedding:
pos_embed = get_2d_sincos_pos_embed(
self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
self.pos_embed.data.copy_(
torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_2d_sincos_pos_embed(
self.decoder_pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
self.decoder_pos_embed.data.copy_(
torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize label embedding table:
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in MDT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
for block in self.sideblocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
if self.mask_ratio is not None:
torch.nn.init.normal_(self.mask_token, std=.02)
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
return imgs
def random_masking(self, x, mask_ratio):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# sort noise for each sample
# ascend: small is keep, large is remove
ids_shuffle = torch.argsort(noise, dim=1)
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(
x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore, ids_keep
def forward_side_interpolater(self, x, c, mask, ids_restore):
# append mask tokens to sequence
mask_tokens = self.mask_token.repeat(
x.shape[0], ids_restore.shape[1] - x.shape[1], 1)
x_ = torch.cat([x, mask_tokens], dim=1)
x = torch.gather(
x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle
# add pos embed
x = x + self.decoder_pos_embed
# pass to the basic block
x_before = x
for sideblock in self.sideblocks:
x = sideblock(x, c, ids_keep=None)
# masked shortcut
mask = mask.unsqueeze(dim=-1)
x = x*mask + (1-mask)*x_before
return x
def forward(self, x, t, y, enable_mask=False):
"""
Forward pass of MDT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
enable_mask: Use mask latent modeling
"""
x = self.x_embedder(
x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(t) # (N, D)
y = self.y_embedder(y, self.training) # (N, D)
c = t + y # (N, D)
masked_stage = False
# masking op for training
if self.mask_ratio is not None and enable_mask:
# masking: length -> length * mask_ratio
x, mask, ids_restore, ids_keep = self.random_masking(
x, self.mask_ratio)
masked_stage = True
for i in range(len(self.blocks)):
if i == (len(self.blocks) - self.decode_layer):
if self.mask_ratio is not None and enable_mask:
x = self.forward_side_interpolater(x, c, mask, ids_restore)
masked_stage = False
else:
# add pos embed
x = x + self.decoder_pos_embed
block = self.blocks[i]
if masked_stage:
x = block(x, c, ids_keep=ids_keep)
else:
x = block(x, c, ids_keep=None)
# (N, T, patch_size ** 2 * out_channels)
x = self.final_layer(x, c)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def forward_with_cfg(self, x, t, y, cfg_scale=None, diffusion_steps=1000, scale_pow=4.0):
"""
Forward pass of MDT, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
if cfg_scale is not None:
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, y)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
scale_step = (
1-torch.cos(((1-t/diffusion_steps)**scale_pow)*math.pi))*1/2 # power-cos scaling
real_cfg_scale = (cfg_scale-1)*scale_step + 1
real_cfg_scale = real_cfg_scale[: len(x) // 2].view(-1, 1, 1, 1)
half_eps = uncond_eps + real_cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
else:
model_out = self.forward(x, t, y)
eps, rest = model_out[:, :3], model_out[:, 3:]
return torch.cat([eps, rest], dim=1)
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate(
[np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(
embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(
embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
#################################################################################
# MDT Configs #
#################################################################################
def MDT_XL_2(**kwargs):
return MDT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
def MDT_XL_4(**kwargs):
return MDT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
def MDT_XL_8(**kwargs):
return MDT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)
def MDT_L_2(**kwargs):
return MDT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)
def MDT_L_4(**kwargs):
return MDT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)
def MDT_L_8(**kwargs):
return MDT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)
def MDT_B_2(**kwargs):
return MDT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)
def MDT_B_4(**kwargs):
return MDT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)
def MDT_B_8(**kwargs):
return MDT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
def MDT_S_2(**kwargs):
return MDT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
def MDT_S_4(**kwargs):
return MDT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
def MDT_S_8(**kwargs):
return MDT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
|