Spaces:
Sleeping
Sleeping
File size: 5,934 Bytes
aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 aecfcd3 1b415b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import streamlit as st
import pandas as pd
from PIL import Image
# Set up page config
st.set_page_config(
page_title="FactBench Leaderboard",
# layout="wide", # Layout remains wide, but content will be centered
)
# Load the image
image = Image.open("factEvalSteps.png")
# Custom CSS for the page
st.markdown(
"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Courier+Prime:wght@400&display=swap');
html, body, [class*="css"] {
font-family: 'Courier Prime', monospace;
}
.title {
font-size: 42px;
font-weight: bold;
text-align: center;
color: #333;
margin-bottom: 5px;
}
.description {
font-size: 22px;
text-align: center;
margin-bottom: 30px;
color: #555;
}
.container {
max-width: 1000px; /* Set a max-width for the container */
margin: 0 auto; /* Center the container */
padding: 20px;
}
table {
width: 100%;
border-collapse: collapse;
border-radius: 10px;
overflow: hidden;
}
th, td {
padding: 8px;
text-align: center;
border: 1px solid #ddd;
font-size: 14px;
transition: background-color 0.3s;
}
th {
background-color: #f2f2f2;
font-weight: bold;
}
td:hover {
background-color: #eaeaea;
}
</style>
""",
unsafe_allow_html=True
)
# Display title and description
st.markdown('<div class="container">', unsafe_allow_html=True)
st.markdown('<div class="title">FactBench</div>',
unsafe_allow_html=True)
st.markdown('<div class="description">Benchmark for LM Factuality Evaluation</div>',
unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Load the data
data_path = "factbench_data.csv"
df = pd.read_csv(data_path)
# Create tabs
tab1, tab2, tab3 = st.tabs(
["Leaderboard", "Benchmark Details", "Submit your models"])
# Tab 1: Leaderboard
with tab1:
st.markdown('<div class="title">Leaderboard</div>',
unsafe_allow_html=True)
st.markdown('<div class="tab-content">', unsafe_allow_html=True)
# Dropdown menu to filter tiers
tiers = ['All Tiers', 'Tier 1: Easy', 'Tier 2: Moderate', 'Tier 3: Hard']
selected_tier = st.selectbox('Select Tier:', tiers)
# Filter the data based on the selected tier
if selected_tier != 'All Tiers':
filtered_df = df[df['Tier'] == selected_tier]
else:
filtered_df = df
# Create HTML for the table
html = '''
<table>
<thead>
<tr>
<th>Tier</th>
<th>Model</th>
<th>FactScore</th>
<th>SAFE</th>
<th>Factcheck-GPT</th>
<th>VERIFY</th>
</tr>
</thead>
<tbody>
'''
# Generate the rows of the table
current_tier = None
for i, row in filtered_df.iterrows():
if row['Tier'] != current_tier:
if current_tier is not None:
# Close the previous tier row
html += ' </tr>'
current_tier = row['Tier']
html += f' <tr><td rowspan="4" style="vertical-align: middle;">{current_tier}</td>'
else:
html += ' <tr>'
# Fill in model and scores
html += f'''
<td>{row['Model']}</td>
<td>{row['FactScore']:.2f}</td>
<td>{row['SAFE']:.2f}</td>
<td>{row['Factcheck-GPT']:.2f}</td>
<td>{row['VERIFY']:.2f}</td>
</tr>
'''
# Close the last row and table tags
html += '''
</table>
'''
# Display the table
st.markdown(html, unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Tab 2: Details
with tab2:
st.markdown('<div class="tab-content">', unsafe_allow_html=True)
st.markdown('<div class="title">Benchmark Details</div>',
unsafe_allow_html=True)
st.image(image, use_column_width=True)
st.markdown('### VERIFY: A Pipeline for Factuality Evaluation')
st.write(
"Language models (LMs) are widely used by an increasing number of users, "
"underscoring the challenge of maintaining factual accuracy across a broad range of topics. "
"We present VERIFY (Verification and Evidence Retrieval for Factuality evaluation), "
"a pipeline to evaluate LMs' factual accuracy in real-world user interactions."
)
st.markdown('### Content Categorization')
st.write(
"VERIFY considers the verifiability of LM-generated content and categorizes content units as "
"`supported`, `unsupported`, or `undecidable` based on the retrieved web evidence. "
"Importantly, VERIFY's factuality judgments correlate better with human evaluations than existing methods."
)
st.markdown('### Hallucination Prompts & FactBench Dataset')
st.write(
"Using VERIFY, we identify 'hallucination prompts' across diverse topics—those eliciting the highest rates of "
"incorrect or unverifiable LM responses. These prompts form FactBench, a dataset of 985 prompts across 213 "
"fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and is "
"regularly updated with new prompts."
)
st.markdown('</div>', unsafe_allow_html=True)
# Tab 3: Links
with tab3:
st.markdown('<div class="tab-content">', unsafe_allow_html=True)
st.markdown('<div class="title">Submit your model information on our Github</div>',
unsafe_allow_html=True)
st.markdown(
'[Test your model locally!](https://github.com/FarimaFatahi/FactEval)')
st.markdown(
'[Submit results or issues!](https://github.com/FarimaFatahi/FactEval/issues/new)')
st.markdown('</div>', unsafe_allow_html=True)
|