Spaces:
Sleeping
Sleeping
File size: 8,455 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
import math
from typing import Optional, Union
from torch import nn
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel
class ConformerYMT3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ConformerYMT3Encoder`]. It is used to
instantiate an ConformerYMT3Encoder according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer
[facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
d_model (`int`, *optional*, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
num_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
dropout_rate (`float`, *optional*, defaults to 0.05):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
output_hidden_size (`int`, *optional*):
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
if `add_adapter is True`.
position_encoding_type (`str`, *optional*, defaults to `"relative"`):
Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left
`None` no relative position embedding is applied.
rotary_embedding_base (`int`, *optional*, defaults to 10000):
If `"rotary"` position embeddings are used, defines the size of the embedding base.
num_max_positions (`int`, *optional*, defaults to 5000):
if `"relative"` position embeddings are used, defines the maximum source input positions.
conv_depthwise_kernel_size (`int`, defaults to 31):
Kernel size of convolutional depthwise 1D layer in Conformer blocks.
Example:
```python
>>> from transformers import ConformerYMT3Config, ConformerYMT3Encoder
>>> # Initializing a ConformerYMT3Encoder configuration
>>> configuration = ConformerYMT3Config()
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> model = ConformerYMT3Encoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "conformer-ymt3"
def __init__(
self,
d_model=512, # 768
num_layers=8, # ConformerYMT3Encoder
num_heads=8, # ConformerYMT3SelfAttention
intermediate_size=2048, # 3072,# used in intermediate_dense of ConformerYMT3FeedForward
hidden_act="gelu", # used in intermediate_act_fn of ConformerYMT3FeedForward
dropout_rate=0.1,
layerdrop=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
conv_dim=(512, 512, 512, 512, 512, 512, 512),
conv_stride=(5, 2, 2, 2, 2, 2, 2),
conv_kernel=(10, 3, 3, 3, 3, 3, 3),
conv_bias=False,
position_encoding_type="rotary",
rotary_embedding_base=10000,
num_max_positions=1024,
conv_depthwise_kernel_size=31,
**kwargs,
):
super().__init__(**kwargs)
self.d_model = d_model
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_layers = num_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.num_heads = num_heads
self.dropout_rate = dropout_rate
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.num_max_positions = num_max_positions
self.position_encoding_type = position_encoding_type
self.rotary_embedding_base = rotary_embedding_base
# Conformer-block related
self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
class ConformerYMT3PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ConformerYMT3Config
base_model_prefix = "wav2vec2_conformer"
main_input_name = "input_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if module.__class__.__name__ == "ConformerYMT3SelfAttention":
if hasattr(module, "pos_bias_u"):
nn.init.xavier_uniform_(module.pos_bias_u)
if hasattr(module, "pos_bias_v"):
nn.init.xavier_uniform_(module.pos_bias_v)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
def _set_gradient_checkpointing(self, module, value=False):
if module.__class__.__name__ == "ConformerYMT3Encoder":
module.gradient_checkpointing = value
|