Spaces:
Sleeping
Sleeping
File size: 11,279 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
"""audio.py"""
import os
import subprocess
import numpy as np
import wave
import math
from typing import Tuple, List
from numpy.lib.stride_tricks import as_strided
def load_audio_file(filename: str,
seg_start_sec: float = 0.,
seg_length_sec: float = 0.,
fs: int = 16000,
dtype: np.dtype = np.float64) -> np.ndarray:
"""Load audio file and return the segment of audio."""
start_frame_idx = int(np.floor(seg_start_sec * fs))
seg_length_frame = int(np.floor(seg_length_sec * fs))
end_frame_idx = start_frame_idx + seg_length_frame
file_ext = filename[-3:]
if file_ext == 'wav':
with wave.open(filename, 'r') as f:
f.setpos(start_frame_idx)
if seg_length_sec == 0:
x = f.readframes(f.getnframes())
else:
x = f.readframes(end_frame_idx - start_frame_idx)
if dtype == np.float64:
x = np.frombuffer(x, dtype=np.int16) / 2**15
elif dtype == np.float32:
x = np.frombuffer(x, dtype=np.int16) / 2**15
x = x.astype(np.float32)
elif dtype == np.int16:
x = np.frombuffer(x, dtype=np.int16)
elif dtype is None:
pass
else:
raise NotImplementedError(f"Unsupported dtype: {dtype}")
else:
raise NotImplementedError(f"Unsupported file extension: {file_ext}")
return x
def get_audio_file_info(filename: str) -> Tuple[int, int, int]:
"""Get audio file info.
Args:
filename: path to the audio file
Returns:
fs: sampling rate
n_frames: number of frames
n_channels: number of channels
"""
file_ext = filename[-3:]
if file_ext == 'wav':
with wave.open(filename, 'r') as f:
fs = f.getframerate()
n_frames = f.getnframes()
n_channels = f.getnchannels()
else:
raise NotImplementedError(f"Unsupported file extension: {file_ext}")
return fs, n_frames, n_channels
def get_segments_from_numpy_array(arr: np.ndarray,
slice_length: int,
start_frame_indices: List[int],
dtype: np.dtype = np.float32) -> np.ndarray:
"""Get random audio slices from numpy array.
Args:
arr: numpy array of shape (c, n_frames)
slice_length: length of the slice
start_frame_indices: list of m start frames
Returns:
slices: numpy array of shape (m, c, slice_length)
"""
c, max_length = arr.shape
max_length = arr.shape[1]
m = len(start_frame_indices)
slices = np.zeros((m, c, slice_length), dtype=dtype)
for i, start_frame in enumerate(start_frame_indices):
end_frame = start_frame + slice_length
assert (end_frame <= max_length - 1)
slices[i, :, :] = arr[:, start_frame:end_frame].astype(dtype)
return slices
def slice_padded_array(x: np.ndarray, slice_length: int, slice_hop: int, pad: bool = True) -> np.ndarray:
"""
Slices the input array into overlapping windows based on the given slice length and slice hop.
Args:
x: The input array to be sliced.
slice_length: The length of each slice.
slice_hop: The number of elements between the start of each slice.
pad: If True, the last slice will be padded with zeros if necessary.
Returns:
A numpy array with shape (n_slices, slice_length) containing the slices.
"""
num_slices = (x.shape[1] - slice_length) // slice_hop + 1
remaining = (x.shape[1] - slice_length) % slice_hop
if pad and remaining > 0:
padding = np.zeros((x.shape[0], slice_length - remaining))
x = np.hstack((x, padding))
num_slices += 1
shape: Tuple[int, int] = (num_slices, slice_length)
strides: Tuple[int, int] = (slice_hop * x.strides[1], x.strides[1])
sliced_x = as_strided(x, shape=shape, strides=strides)
return sliced_x
def slice_padded_array_for_subbatch(x: np.ndarray,
slice_length: int,
slice_hop: int,
pad: bool = True,
sub_batch_size: int = 1,
dtype: np.dtype = np.float32) -> np.ndarray:
"""
Slices the input array into overlapping windows based on the given slice length and slice hop,
and pads it to make the output divisible by the sub_batch_size.
NOTE: This method is currently not used.
Args:
x: The input array to be sliced, such as (1, n_frames).
slice_length: The length of each slice.
slice_hop: The number of elements between the start of each slice.
pad: If True, the last slice will be padded with zeros if necessary.
sub_batch_size: The desired number of slices to be divisible by.
Returns:
A numpy array with shape (n_slices, slice_length) containing the slices.
"""
num_slices = (x.shape[1] - slice_length) // slice_hop + 1
remaining = (x.shape[1] - slice_length) % slice_hop
if pad and remaining > 0:
padding = np.zeros((x.shape[0], slice_length - remaining), dtype=dtype)
x = np.hstack((x, padding))
num_slices += 1
# Adjust the padding to make n_slices divisible by sub_batch_size
if pad and num_slices % sub_batch_size != 0:
additional_padding_needed = (sub_batch_size - (num_slices % sub_batch_size)) * slice_hop
additional_padding = np.zeros((x.shape[0], additional_padding_needed), dtype=dtype)
x = np.hstack((x, additional_padding))
num_slices += (sub_batch_size - (num_slices % sub_batch_size))
shape: Tuple[int, int] = (num_slices, slice_length)
strides: Tuple[int, int] = (slice_hop * x.strides[1], x.strides[1])
sliced_x = as_strided(x, shape=shape, strides=strides)
return sliced_x
def pitch_shift_audio(src_audio_file: os.PathLike,
min_pitch_shift: int = -5,
max_pitch_shift: int = 6,
random_microshift_range: tuple[int, int] = (-10, 11)):
"""
Pitch shift audio file using the Sox command-line tool.
NOTE: This method is currently not used. Previously, we used this for
offline augmentation for GuitarSet.
Args:
src_audio_file: Path to the input audio file.
min_pitch_shift: Minimum pitch shift in semitones.
max_pitch_shift: Maximum pitch shift in semitones.
random_microshift_range: Range of random microshifts to apply in tenths of a semitone.
Returns:
None
Raises:
CalledProcessError: If the Sox command fails to execute.
"""
# files
src_audio_dir = os.path.dirname(src_audio_file)
src_audio_filename = os.path.basename(src_audio_file).split('.')[0]
# load source audio
try:
audio = load_audio_file(src_audio_file, dtype=np.int16)
audio = audio / 2**15
audio = audio.astype(np.float16)
except Exception as e:
print(f"Failed to load audio file: {src_audio_file}. {e}")
return
# pitch shift audio for each semitone in the range
for pitch_shift in range(min_pitch_shift, max_pitch_shift):
if pitch_shift == 0:
continue
# pitch shift audio by sox
dst_audio_file = os.path.join(src_audio_dir, f'{src_audio_filename}_pshift{pitch_shift}.wav')
shift_semitone = 100 * pitch_shift + np.random.randint(*random_microshift_range)
# build Sox command
command = ['sox', src_audio_file, '-r', '16000', dst_audio_file, 'pitch', str(shift_semitone)]
try:
# execute Sox command and check for errors
subprocess.run(command, check=True)
print(f"Created {dst_audio_file}")
except subprocess.CalledProcessError as e:
print(f"Failed to pitch shift audio file: {src_audio_file}, pitch_shift: {pitch_shift}. {e}")
def write_wav_file(filename: str, x: np.ndarray, samplerate: int = 16000) -> None:
"""
Write a mono PCM WAV file from a NumPy array of audio samples.
Args:
filename (str): The name of the WAV file to be created.
x (np.ndarray): A 1D NumPy array containing the audio samples to be written to the WAV file.
The audio samples should be in the range [-1, 1].
samplerate (int): The sample rate (in Hz) of the audio samples.
Returns:
None
"""
# Set the WAV file parameters
nchannels = 1 # Mono
sampwidth = 2 # 16-bit
framerate = samplerate
nframes = len(x)
# Scale the audio samples to the range [-32767, 32767]
x_scaled = np.array(x * 32767, dtype=np.int16)
# Set the buffer size for writing the WAV file
BUFFER_SIZE = 1024
# Open the WAV file for writing
with wave.open(filename, "wb") as wav_file:
# Set the WAV file parameters
wav_file.setparams((nchannels, sampwidth, framerate, nframes, "NONE", "NONE"))
# Write the audio samples to the file in chunks
for i in range(0, len(x_scaled), BUFFER_SIZE):
# Get the next chunk of audio samples
chunk = x_scaled[i:i + BUFFER_SIZE]
# Convert the chunk of audio samples to a byte string and write it to the WAV file
wav_file.writeframes(chunk.tobytes())
# Close the WAV file
wav_file.close()
def guess_onset_offset_by_amp_envelope(x, fs=16000, onset_threshold=0.05, offset_threshold=0.02, frame_size=256):
""" Guess onset/offset from audio signal x """
amp_env = []
num_frames = math.floor(len(x) / frame_size)
for t in range(num_frames):
lower = t * frame_size
upper = (t + 1) * frame_size - 1
# Find maximum of each frame and add it to our array
amp_env.append(np.max(x[lower:upper]))
amp_env = np.array(amp_env)
# Find the first index where the amplitude envelope is greater than the threshold
onset = np.where(amp_env > onset_threshold)[0][0] * frame_size
offset = (len(amp_env) - 1 - np.where(amp_env[::-1] > offset_threshold)[0][0]) * frame_size
return onset, offset, amp_env
# from pydub import AudioSegment
# def convert_flac_to_wav(input_path, output_path):
# # Load FLAC file using Pydub
# sound = AudioSegment.from_file(input_path, format="flac")
# # Set the parameters for the output WAV file
# channels = 1 # mono
# sample_width = 2 # 16-bit
# frame_rate = 16000
# # Convert the input sound to the specified format
# sound = sound.set_frame_rate(frame_rate)
# sound = sound.set_channels(channels)
# sound = sound.set_sample_width(sample_width)
# # Save the output WAV file to the specified path
# sound.export(output_path, format="wav")
|