File size: 26,539 Bytes
7d68ade |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
from ast import literal_eval as ast_literal_eval
from time import time as get_time
from math import log as math_log
from re import compile as re_compile,sub as re_sub
from json import load as json_load
from argparse import Namespace
from collections import namedtuple
from urduhack import normalize as shahmukhi_normalize
from indicnlp.normalize.indic_normalize import IndicNormalizerFactory
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.token_generation_constraints import pack_constraints, unpack_constraints
from fairseq_cli.generate import get_symbols_to_strip_from_output
RTL_LANG_CODES = {
'ks',
'pnb',
'sd',
'skr',
'ur',
'dv'
}
LANG_CODE_TO_SCRIPT_CODE = {
"as" : "Beng",
"bn" : "Beng",
"doi" : "Deva",
"dv" : "Thaa",
"gom" : "Deva",
"gu" : "Gujr",
"hi" : "Deva",
"ks" : "Aran",
"mai" : "Deva",
"mr" : "Deva",
"ne" : "Deva",
"or" : "Orya",
"pa" : "Guru",
"pnb" : "Aran",
"sa" : "Deva",
"sd" : "Arab",
"si" : "Sinh",
"skr" : "Aran",
"ur" : "Aran",
"kn" : "Knda",
"ml" : "Mlym",
"ta" : "Taml",
"te" : "Telu",
"brx" : "Deva",
"mni" : "Mtei",
"sat" : "Olck",
"en" : "Latn",
}
SCRIPT_CODE_TO_UNICODE_CHARS_RANGE_STR = {
"Beng": "\u0980-\u09FF",
"Deva": "\u0900-\u097F",
"Gujr": "\u0A80-\u0AFF",
"Guru": "\u0A00-\u0A7F",
"Orya": "\u0B00-\u0B7F",
"Knda": "\u0C80-\u0CFF",
"Mlym": "\u0D00-\u0D7F",
"Sinh": "\u0D80-\u0DFF",
"Taml": "\u0B80-\u0BFF",
"Telu": "\u0C00-\u0C7F",
"Mtei": "\uABC0-\uABFF",
"Arab": "\u0600-\u06FF\u0750-\u077F\u0870-\u089F\u08A0-\u08FF",
"Aran": "\u0600-\u06FF\u0750-\u077F\u0870-\u089F\u08A0-\u08FF",
"Latn": "\u0041-\u005A\u0061-\u007A",
"Olck": "\u1C50-\u1C7F",
"Thaa": "\u0780-\u07BF",
}
INDIC_TO_LATIN_PUNCT = {
'।': '.',
'॥': "..",
'෴': '.',
'꫰': ',',
'꯫': '.',
'᱾': '.',
'᱿': '..',
'۔': '.',
'؟': '?',
'،': ',',
'؛': ';',
'': "..",
}
INDIC_TO_LATIN_PUNCT_TRANSLATOR = str.maketrans(INDIC_TO_LATIN_PUNCT)
NON_LATIN_FULLSTOP_LANGS = {
'as' : '।',
'bn' : '।',
'brx': '।',
'doi': '।',
'hi' : '।',
'mai': '।',
'mni': '꯫',
'ne' : '।',
'or' : '।',
'pa' : '।',
'sa' : '।',
'sat': '᱾',
'ks' : '۔',
'pnb': '۔',
'skr': '۔',
'ur' : '۔',
}
ENDS_WITH_LATIN_FULLSTOP_REGEX = re_compile("(^|.*[^.])\.$")
def nativize_latin_fullstop(text, lang_code):
if lang_code in NON_LATIN_FULLSTOP_LANGS and ENDS_WITH_LATIN_FULLSTOP_REGEX.match(text):
return text[:-1] + NON_LATIN_FULLSTOP_LANGS[lang_code]
return text
LATIN_TO_PERSOARABIC_PUNCTUATIONS = {
'?': '؟',
',': '،',
';': '؛',
}
LATIN_TO_PERSOARABIC_PUNC_TRANSLATOR = str.maketrans(LATIN_TO_PERSOARABIC_PUNCTUATIONS)
SCRIPT_CODE_TO_NUMERALS = {
"Beng": "০১২৩৪৫৬৭৮৯",
"Deva": "०१२३४५६७८९",
"Gujr": "૦૧૨૩૪૫૬૭૮૯",
"Guru": "੦੧੨੩੪੫੬੭੮੯",
"Orya": "୦୧୨୩୪୫୬୭୮୯",
"Knda": "೦೧೨೩೪೫೬೭೮೯",
"Mlym": "൦൧൨൩൪൫൬൭൮൯",
"Sinh": "෦෧෨෩෪෫෬෭෮෯",
"Taml": "௦௧௨௩௪௫௬௭௮௯",
"Telu": "౦౧౨౩౪౫౬౭౮౯",
"Mtei": "꯰꯱꯲꯳꯴꯵꯶꯷꯸꯹",
"Arab": "۰۱۲۳۴۵۶۷۸۹",
"Aran": "۰۱۲۳۴۵۶۷۸۹",
"Latn": "0123456789",
"Olck": "᱐᱑᱒᱓᱔᱕᱖᱗᱘᱙",
"Thaa": "٠١٢٣٤٥٦٧٨٩",
}
LANG_CODE_TO_NUMERALS = {
lang_code: SCRIPT_CODE_TO_NUMERALS[script_code]
for lang_code, script_code in LANG_CODE_TO_SCRIPT_CODE.items()
}
INDIC_TO_STANDARD_NUMERALS_GLOBAL_MAP = {}
for lang_code, lang_numerals in LANG_CODE_TO_NUMERALS.items():
map_dict = {lang_numeral: en_numeral for lang_numeral, en_numeral in zip(lang_numerals, LANG_CODE_TO_NUMERALS["en"])}
INDIC_TO_STANDARD_NUMERALS_GLOBAL_MAP.update(map_dict)
INDIC_TO_STANDARD_NUMERALS_TRANSLATOR = str.maketrans(INDIC_TO_STANDARD_NUMERALS_GLOBAL_MAP)
NATIVE_TO_LATIN_NUMERALS_TRANSLATORS = {
lang_code: str.maketrans({lang_numeral: en_numeral for lang_numeral, en_numeral in zip(lang_numerals, LANG_CODE_TO_NUMERALS["en"])})
for lang_code, lang_numerals in LANG_CODE_TO_NUMERALS.items()
if lang_code != "en"
}
LATIN_TO_NATIVE_NUMERALS_TRANSLATORS = {
lang_code: str.maketrans({en_numeral: lang_numeral for en_numeral, lang_numeral in zip(LANG_CODE_TO_NUMERALS["en"], lang_numerals)})
for lang_code, lang_numerals in LANG_CODE_TO_NUMERALS.items()
if lang_code != "en"
}
WORDFINAL_INDIC_VIRAMA_REGEX = re_compile("(\u09cd|\u094d|\u0acd|\u0a4d|\u0b4d|\u0ccd|\u0d4d|\u0dca|\u0bcd|\u0c4d|\uaaf6)$")
def hardfix_wordfinal_virama(word):
return WORDFINAL_INDIC_VIRAMA_REGEX.sub("\\1\u200c", word)
ODIA_CONFUSING_YUKTAKSHARA_REGEX = re_compile("(\u0b4d)(ବ|ଵ|ୱ|ଯ|ୟ)")
def fix_odia_confusing_ambiguous_yuktakshara(word):
return ODIA_CONFUSING_YUKTAKSHARA_REGEX.sub("\\1\u200c\\2", word)
LATIN_WORDFINAL_CONSONANTS_CHECKER_REGEX = re_compile(".*([bcdfghjklmnpqrstvwxyz])$")
DEVANAGARI_WORDFINAL_CONSONANTS_REGEX = re_compile("([\u0915-\u0939\u0958-\u095f\u0979-\u097c\u097e-\u097f])$")
def explicit_devanagari_wordfinal_schwa_delete(roman_word, indic_word):
if LATIN_WORDFINAL_CONSONANTS_CHECKER_REGEX.match(roman_word):
indic_word = DEVANAGARI_WORDFINAL_CONSONANTS_REGEX.sub("\\1\u094d", indic_word)
return indic_word
def rreplace(text, find_pattern, replace_pattern, match_count=1):
splits = text.rsplit(find_pattern, match_count)
return replace_pattern.join(splits)
LANG_WORD_REGEXES = {
lang_name: re_compile(f"[{SCRIPT_CODE_TO_UNICODE_CHARS_RANGE_STR[script_name]}]+")
for lang_name, script_name in LANG_CODE_TO_SCRIPT_CODE.items()
}
normalizer_factory = IndicNormalizerFactory()
Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints")
Translation = namedtuple("Translation", "src_str hypos pos_scores alignments")
def make_batches(lines, cfg, task, max_positions, encode_fn):
def encode_fn_target(x):
return encode_fn(x)
if cfg.generation.constraints:
batch_constraints = [list() for _ in lines]
for i, line in enumerate(lines):
if "\t" in line:
lines[i], *batch_constraints[i] = line.split("\t")
for i, constraint_list in enumerate(batch_constraints):
batch_constraints[i] = [
task.target_dictionary.encode_line(
encode_fn_target(constraint),
append_eos=False,
add_if_not_exist=False,
)
for constraint in constraint_list
]
if cfg.generation.constraints:
constraints_tensor = pack_constraints(batch_constraints)
else:
constraints_tensor = None
tokens, lengths = task.get_interactive_tokens_and_lengths(lines, encode_fn)
itr = task.get_batch_iterator(
dataset=task.build_dataset_for_inference(
tokens, lengths, constraints=constraints_tensor
),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=max_positions,
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
).next_epoch_itr(shuffle=False)
for batch in itr:
ids = batch["id"]
src_tokens = batch["net_input"]["src_tokens"]
src_lengths = batch["net_input"]["src_lengths"]
constraints = batch.get("constraints", None)
yield Batch(
ids=ids,
src_tokens=src_tokens,
src_lengths=src_lengths,
constraints=constraints,
)
class Transliterator:
def __init__(
self, data_bin_dir, model_checkpoint_path, lang_pairs_csv, lang_list_file, beam,device, batch_size = 32,
):
self.parser = options.get_interactive_generation_parser()
self.parser.set_defaults(
path = model_checkpoint_path,
num_wokers = -1,
batch_size = batch_size,
buffer_size = batch_size + 1,
task = "translation_multi_simple_epoch",
beam = beam,
)
self.args = options.parse_args_and_arch(self.parser, input_args = [data_bin_dir] )
self.args.skip_invalid_size_inputs_valid_test = False
self.args.lang_pairs = lang_pairs_csv
self.args.lang_dict = lang_list_file
self.cfg = convert_namespace_to_omegaconf(self.args)
if isinstance(self.cfg, Namespace):
self.cfg = convert_namespace_to_omegaconf(self.cfg)
self.total_translate_time = 0
utils.import_user_module(self.cfg.common)
if self.cfg.interactive.buffer_size < 1:
self.cfg.interactive.buffer_size = 1
if self.cfg.dataset.max_tokens is None and self.cfg.dataset.batch_size is None:
self.cfg.dataset.batch_size = 1
assert (
not self.cfg.generation.sampling or self.cfg.generation.nbest == self.cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
not self.cfg.dataset.batch_size
or self.cfg.dataset.batch_size <= self.cfg.interactive.buffer_size
), "--batch-size cannot be larger than --buffer-size"
self.use_cuda = device.type == "cuda"
self.task = tasks.setup_task(self.cfg.task)
overrides = ast_literal_eval(self.cfg.common_eval.model_overrides)
self.models, _model_args = checkpoint_utils.load_model_ensemble(
utils.split_paths(self.cfg.common_eval.path),
arg_overrides=overrides,
task=self.task,
suffix=self.cfg.checkpoint.checkpoint_suffix,
strict=(self.cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=self.cfg.checkpoint.checkpoint_shard_count,
)
self.src_dict = self.task.source_dictionary
self.tgt_dict = self.task.target_dictionary
for i in range(len(self.models)):
if self.models[i] is None:
continue
if self.cfg.common.fp16:
self.models[i].half()
if self.use_cuda and not self.cfg.distributed_training.pipeline_model_parallel:
self.models[i].cuda()
self.models[i].prepare_for_inference_(self.cfg)
self.generator = self.task.build_generator(self.models, self.cfg.generation)
self.tokenizer = self.task.build_tokenizer(self.cfg.tokenizer)
self.bpe = self.task.build_bpe(self.cfg.bpe)
self.align_dict = utils.load_align_dict(self.cfg.generation.replace_unk)
self.max_positions = utils.resolve_max_positions(
self.task.max_positions(), *[model.max_positions() for model in self.models]
)
def encode_fn(self, x):
if self.tokenizer is not None:
x = self.tokenizer.encode(x)
if self.bpe is not None:
x = self.bpe.encode(x)
return x
def decode_fn(self, x):
if self.bpe is not None:
x = self.bpe.decode(x)
if self.tokenizer is not None:
x = self.tokenizer.decode(x)
return x
def translate(self, inputs, nbest=1):
start_id = 0
results = []
for batch in make_batches(inputs, self.cfg, self.task, self.max_positions, self.encode_fn):
bsz = batch.src_tokens.size(0)
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
constraints = batch.constraints
if self.use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
if constraints is not None:
constraints = constraints.cuda()
sample = {
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
}
translate_start_time = get_time()
translations = self.task.inference_step(
self.generator, self.models, sample, constraints=constraints
)
translate_time = get_time() - translate_start_time
self.total_translate_time += translate_time
list_constraints = [[] for _ in range(bsz)]
if self.cfg.generation.constraints:
list_constraints = [unpack_constraints(c) for c in constraints]
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
src_tokens_i = utils.strip_pad(src_tokens[i], self.tgt_dict.pad())
constraints = list_constraints[i]
results.append(
(
start_id + id,
src_tokens_i,
hypos,
{
"constraints": constraints,
"time": translate_time / len(translations),
},
)
)
result_str = ""
for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
src_str = ""
if self.src_dict is not None:
src_str = self.src_dict.string(src_tokens, self.cfg.common_eval.post_process)
result_str += "S-{}\t{}".format(id_, src_str) + '\n'
result_str += "W-{}\t{:.3f}\tseconds".format(id_, info["time"]) + '\n'
for constraint in info["constraints"]:
result_str += "C-{}\t{}".format(
id_,
self.tgt_dict.string(constraint, self.cfg.common_eval.post_process),
) + '\n'
for hypo in hypos[: min(len(hypos), nbest)]:
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo["tokens"].int().cpu(),
src_str=src_str,
alignment=hypo["alignment"],
align_dict=self.align_dict,
tgt_dict=self.tgt_dict,
remove_bpe=self.cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(self.generator),
)
detok_hypo_str = self.decode_fn(hypo_str)
score = hypo["score"] / math_log(2)
result_str += "H-{}\t{}\t{}".format(id_, score, hypo_str) + '\n'
result_str += "D-{}\t{}\t{}".format(id_, score, detok_hypo_str) + '\n'
result_str += "P-{}\t{}".format(
id_,
" ".join(
map(
lambda x: "{:.4f}".format(x),
hypo["positional_scores"].div_(math_log(2)).tolist(),
)
),
) + '\n'
if self.cfg.generation.print_alignment:
alignment_str = " ".join(
["{}-{}".format(src, tgt) for src, tgt in alignment]
)
result_str += "A-{}\t{}".format(id_, alignment_str) + '\n'
return result_str
class BaseEngineTransformer():
def __init__(self, word_prob_dicts_files,corpus_bin_dir,lang_list,model_file,tgt_langs, beam_width, rescore,device):
self.all_supported_langs = {'as', 'bn', 'brx', 'gom', 'gu', 'hi', 'kn', 'ks', 'mai', 'ml', 'mni', 'mr', 'ne', 'or', 'pa', 'sa', 'sd', 'si', 'ta', 'te', 'ur'}
print("Initializing Multilingual model for transliteration")
if 'en' in tgt_langs:
lang_pairs_csv = ','.join([lang+"-en" for lang in self.all_supported_langs])
else:
lang_pairs_csv = ','.join(["en-"+lang for lang in self.all_supported_langs])
self.transliterator = Transliterator(
corpus_bin_dir,
model_file,
lang_pairs_csv = lang_pairs_csv,
lang_list_file=lang_list,
device=device,
beam = beam_width, batch_size = 32,
)
self.beam_width = beam_width
self._rescore = rescore
if self._rescore:
self.word_prob_dicts={lang:json_load(open(word_prob_dicts_files[lang])) for lang in tgt_langs}
def indic_normalize(self, words, lang_code):
if lang_code not in ['gom', 'ks', 'ur', 'mai', 'brx', 'mni']:
normalizer = normalizer_factory.get_normalizer(lang_code)
words = [ normalizer.normalize(word) for word in words ]
if lang_code in ['mai', 'brx' ]:
normalizer = normalizer_factory.get_normalizer('hi')
words = [ normalizer.normalize(word) for word in words ]
if lang_code in [ 'ur' ]:
words = [ shahmukhi_normalize(word) for word in words ]
if lang_code == 'gom':
normalizer = normalizer_factory.get_normalizer('kK')
words = [ normalizer.normalize(word) for word in words ]
return words
def pre_process(self, words, src_lang, tgt_lang):
if src_lang != 'en':
self.indic_normalize(words, src_lang)
words = [' '.join(list(word.lower())) for word in words]
lang_code = tgt_lang if src_lang == 'en' else src_lang
words = ['__'+ lang_code +'__ ' + word for word in words]
return words
def rescore(self, res_dict, result_dict, tgt_lang, alpha ):
alpha = alpha
word_prob_dict = self.word_prob_dicts[tgt_lang]
candidate_word_prob_norm_dict = {}
candidate_word_result_norm_dict = {}
input_data = {}
for i in res_dict.keys():
input_data[res_dict[i]['S']] = []
for j in range(len(res_dict[i]['H'])):
input_data[res_dict[i]['S']].append( res_dict[i]['H'][j][0] )
for src_word in input_data.keys():
candidates = input_data[src_word]
candidates = [' '.join(word.split(' ')) for word in candidates]
total_score = 0
if src_word.lower() in result_dict.keys():
for candidate_word in candidates:
if candidate_word in result_dict[src_word.lower()].keys():
total_score += result_dict[src_word.lower()][candidate_word]
candidate_word_result_norm_dict[src_word.lower()] = {}
for candidate_word in candidates:
candidate_word_result_norm_dict[src_word.lower()][candidate_word] = (result_dict[src_word.lower()][candidate_word]/total_score)
candidates = [''.join(word.split(' ')) for word in candidates ]
total_prob = 0
for candidate_word in candidates:
if candidate_word in word_prob_dict.keys():
total_prob += word_prob_dict[candidate_word]
candidate_word_prob_norm_dict[src_word.lower()] = {}
for candidate_word in candidates:
if candidate_word in word_prob_dict.keys():
candidate_word_prob_norm_dict[src_word.lower()][candidate_word] = (word_prob_dict[candidate_word]/total_prob)
output_data = {}
for src_word in input_data.keys():
temp_candidates_tuple_list = []
candidates = input_data[src_word]
candidates = [ ''.join(word.split(' ')) for word in candidates]
for candidate_word in candidates:
if candidate_word in word_prob_dict.keys():
temp_candidates_tuple_list.append((candidate_word, alpha*candidate_word_result_norm_dict[src_word.lower()][' '.join(list(candidate_word))] + (1-alpha)*candidate_word_prob_norm_dict[src_word.lower()][candidate_word] ))
else:
temp_candidates_tuple_list.append((candidate_word, 0 ))
temp_candidates_tuple_list.sort(key = lambda x: x[1], reverse = True )
temp_candidates_list = []
for cadidate_tuple in temp_candidates_tuple_list:
temp_candidates_list.append(' '.join(list(cadidate_tuple[0])))
output_data[src_word] = temp_candidates_list
return output_data
def post_process(self, translation_str, tgt_lang):
lines = translation_str.split('\n')
list_s = [line for line in lines if 'S-' in line]
list_h = [line for line in lines if 'H-' in line]
list_s.sort(key = lambda x: int(x.split('\t')[0].split('-')[1]) )
list_h.sort(key = lambda x: int(x.split('\t')[0].split('-')[1]) )
res_dict = {}
for s in list_s:
s_id = int(s.split('\t')[0].split('-')[1])
res_dict[s_id] = { 'S' : s.split('\t')[1] }
res_dict[s_id]['H'] = []
for h in list_h:
h_id = int(h.split('\t')[0].split('-')[1])
if s_id == h_id:
res_dict[s_id]['H'].append( ( h.split('\t')[2], pow(2,float(h.split('\t')[1])) ) )
for r in res_dict.keys():
res_dict[r]['H'].sort(key = lambda x : float(x[1]) ,reverse =True)
result_dict = {}
for i in res_dict.keys():
result_dict[res_dict[i]['S']] = {}
for j in range(len(res_dict[i]['H'])):
result_dict[res_dict[i]['S']][res_dict[i]['H'][j][0]] = res_dict[i]['H'][j][1]
transliterated_word_list = []
if self._rescore:
output_dir = self.rescore(res_dict, result_dict, tgt_lang, alpha = 0.9)
for src_word in output_dir.keys():
for j in range(len(output_dir[src_word])):
transliterated_word_list.append( output_dir[src_word][j] )
else:
for i in res_dict.keys():
for j in range(len(res_dict[i]['H'])):
transliterated_word_list.append( res_dict[i]['H'][j][0] )
transliterated_word_list = [''.join(word.split(' ')) for word in transliterated_word_list]
return transliterated_word_list
def _transliterate_word(self, text, src_lang, tgt_lang, topk=4, nativize_punctuations=True, nativize_numerals=False):
if not text:
return text
text = text.lower().strip()
if src_lang != 'en':
text = text.translate(INDIC_TO_LATIN_PUNCT_TRANSLATOR)
text = text.translate(INDIC_TO_STANDARD_NUMERALS_TRANSLATOR)
else:
if nativize_punctuations:
if tgt_lang in RTL_LANG_CODES:
text = text.translate(LATIN_TO_PERSOARABIC_PUNC_TRANSLATOR)
text = nativize_latin_fullstop(text, tgt_lang)
if nativize_numerals:
text = text.translate(LATIN_TO_NATIVE_NUMERALS_TRANSLATORS[tgt_lang])
matches = LANG_WORD_REGEXES[src_lang].findall(text)
if not matches:
return [text]
src_word = matches[-1]
transliteration_list = self.batch_transliterate_words([src_word], src_lang, tgt_lang, topk=topk)[0]
if tgt_lang != 'en' or tgt_lang != 'sa':
for i in range(len(transliteration_list)):
transliteration_list[i] = hardfix_wordfinal_virama(transliteration_list[i])
if src_word == text:
return transliteration_list
return [
rreplace(text, src_word, tgt_word)
for tgt_word in transliteration_list
]
def batch_transliterate_words(self, words, src_lang, tgt_lang, topk=4):
perprcossed_words = self.pre_process(words, src_lang, tgt_lang)
translation_str = self.transliterator.translate(perprcossed_words, nbest=topk)
transliteration_list = self.post_process(translation_str, tgt_lang)
if tgt_lang == 'mr':
for i in range(len(transliteration_list)):
transliteration_list[i] = transliteration_list[i].replace("अॅ", 'ॲ')
if tgt_lang == 'or':
for i in range(len(transliteration_list)):
transliteration_list[i] = fix_odia_confusing_ambiguous_yuktakshara(transliteration_list[i])
if tgt_lang == 'sa':
for i in range(len(transliteration_list)):
transliteration_list[i] = explicit_devanagari_wordfinal_schwa_delete(words[0], transliteration_list[i])
transliteration_list = list(dict.fromkeys(transliteration_list))
return [transliteration_list]
def _transliterate_sentence(self, text, src_lang, tgt_lang, nativize_punctuations=True, nativize_numerals=False):
if not text:
return text
text = text.lower().strip()
if src_lang != 'en':
text = text.translate(INDIC_TO_LATIN_PUNCT_TRANSLATOR)
text = text.translate(INDIC_TO_STANDARD_NUMERALS_TRANSLATOR)
else:
if nativize_punctuations:
if tgt_lang in RTL_LANG_CODES:
text = text.translate(LATIN_TO_PERSOARABIC_PUNC_TRANSLATOR)
text = nativize_latin_fullstop(text, tgt_lang)
if nativize_numerals:
text = text.translate(LATIN_TO_NATIVE_NUMERALS_TRANSLATORS[tgt_lang])
matches = LANG_WORD_REGEXES[src_lang].findall(text)
if not matches:
return text
out_str = text
for match in matches:
result = self.batch_transliterate_words([match], src_lang, tgt_lang)[0][0]
out_str = re_sub(match, result, out_str, 1)
return out_str
|