Spaces:
Paused
Paused
File size: 145,091 Bytes
f8b3075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 |
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.cm import ScalarMappable
from matplotlib.patches import Rectangle
from librosa.sequence import viterbi_discriminative , dtw
from librosa import note_to_hz,midi_to_hz
from numba import jit
from scipy.stats import norm
from scipy.ndimage import gaussian_filter1d
from scipy.signal import medfilt ,upfirdn,argrelmax
from torchaudio.models.conformer import ConformerLayer
from torchaudio import load as torchaudio_load
from torchaudio.functional import resample as torchaudio_functional_resample
from torch import cat as torch_cat , load as torch_load ,Tensor as torch_Tensor , from_numpy as torch_from_numpy,no_grad as torch_no_grad ,mean as torch_mean,std as torch_std,sigmoid as torch_sigmoid,nan_to_num as torch_nan_to_num,nn
from sklearn.metrics.pairwise import euclidean_distances
from mir_eval.melody import hz2cents
from pretty_midi import PrettyMIDI , Instrument , Note , PitchBend , instrument_name_to_program ,note_name_to_number
from time import perf_counter
from collections import defaultdict
from typing import DefaultDict, Dict, List, Optional, Tuple
from pathlib import Path
from mido import MidiFile,MidiTrack
class PitchEstimator(nn.Module):
"""
This is the base class that everything else inherits from. The hierarchy is:
PitchEstimator -> Transcriber -> Synchronizer -> AutonomousAgent -> The n-Head Music Performance Analysis Models
PitchEstimator can handle reading the audio, predicting all the features,
estimating a single frame level f0 using viterbi, or
MIDI pitch bend creation for the predicted note events when used inside a Transcriber, or
score-informed f0 estimation when used inside a Synchronizer.
"""
def __init__(self, labeling, instrument='Violin', sr=16000, window_size=1024, hop_length=160):
super().__init__()
self.labeling = labeling
self.sr = sr
self.window_size = window_size
self.hop_length = hop_length
self.instrument = instrument
self.f0_bins_per_semitone = int(np.round(100/self.labeling.f0_granularity_c))
def read_audio(self, audio):
"""
Read and resample an audio file, convert to mono, and unfold into representation frames.
The time array represents the center of each small frame with 5.8ms hop length. This is different than the chunk
level frames. The chunk level frames represent the entire sequence the model sees. Whereas it predicts with the
small frames intervals (5.8ms).
:param audio: str, pathlib.Path, np.ndarray, or torch.Tensor
:return: frames: (n_big_frames, frame_length), times: (n_small_frames,)
"""
if isinstance(audio, str) or isinstance(audio, Path):
audio, sample_rate = torchaudio_load(audio, normalize=True)
audio = audio.mean(axis=0) # convert to mono
if sample_rate != self.sr:
audio = torchaudio_functional_resample(audio, sample_rate, self.sr)
elif isinstance(audio, np.ndarray):
audio = torch_from_numpy(audio)
else:
assert isinstance(audio, torch_Tensor)
len_audio = audio.shape[-1]
n_frames = int(np.ceil((len_audio + sum(self.frame_overlap)) / (self.hop_length * self.chunk_size)))
audio = nn.functional.pad(audio, (self.frame_overlap[0],
self.frame_overlap[1] + (n_frames * self.hop_length * self.chunk_size) - len_audio))
frames = audio.unfold(0, self.max_window_size, self.hop_length*self.chunk_size)
times = np.arange(0, len_audio, self.hop_length) / self.sr # not tensor, we don't compute anything with it
return frames, times
def predict(self, audio, batch_size):
frames, times = self.read_audio(audio)
performance = {'f0': [], 'note': [], 'onset': [], 'offset': []}
self.eval()
device = self.main.conv0.conv2d.weight.device
with torch_no_grad():
for i in range(0, len(frames), batch_size):
f = frames[i:min(i + batch_size, len(frames))].to(device)
f -= (torch_mean(f, axis=1).unsqueeze(-1))
f /= (torch_std(f, axis=1).unsqueeze(-1))
out = self.forward(f)
for key, value in out.items():
value = torch_sigmoid(value)
value = torch_nan_to_num(value) # the model outputs nan when the frame is silent (this is an expected behavior due to normalization)
value = value.view(-1, value.shape[-1])
value = value.detach().cpu().numpy()
performance[key].append(value)
performance = {key: np.concatenate(value, axis=0)[:len(times)] for key, value in performance.items()}
performance['time'] = times
return performance
def estimate_pitch(self, audio, batch_size, viterbi=False):
out = self.predict(audio, batch_size)
f0_hz = self.out2f0(out, viterbi)
return out['time'], f0_hz
def out2f0(self, out, viterbi=False):
"""
Monophonic f0 estimation from the model output. The viterbi postprocessing is specialized for the violin family.
"""
salience = out['f0']
if viterbi == 'constrained':
assert hasattr(self, 'out2note')
notes = spotify_create_notes( out["note"], out["onset"], note_low=self.labeling.midi_centers[0],
note_high=self.labeling.midi_centers[-1], onset_thresh=0.5, frame_thresh=0.3,
infer_onsets=True, melodia_trick=True,
min_note_len=int(np.round(127.70 / 1000 * (self.sr / self.hop_length))))
note_cents = self.get_pitch_bends(salience, notes, to_midi=False, timing_refinement_range=0)
cents = np.zeros_like(out['time'])
cents[note_cents[:,0].astype(int)] = note_cents[:,1]
elif viterbi:
# transition probabilities inducing continuous pitch
# big changes are penalized with one order of magnitude
transition = gaussian_filter1d(np.eye(self.labeling.f0_n_bins), 30) + 99 * gaussian_filter1d(
np.eye(self.labeling.f0_n_bins), 2)
transition = transition / np.sum(transition, axis=1)[:, None]
p = salience / salience.sum(axis=1)[:, None]
p[np.isnan(p.sum(axis=1)), :] = np.ones(self.labeling.f0_n_bins) * 1 / self.labeling.f0_n_bins
path = viterbi_discriminative(p.T, transition)
cents = np.array([self.labeling.f0_label2c(salience[i, :], path[i]) for i in range(len(path))])
else:
cents = self.labeling.f0_label2c(salience, center=None) # use argmax for center
f0_hz = self.labeling.f0_c2hz(cents)
f0_hz[np.isnan(f0_hz)] = 0
return f0_hz
def get_pitch_bends(
self,
contours: np.ndarray, note_events: List[Tuple[int, int, int, float]],
timing_refinement_range: int = 0, to_midi: bool = True,
) -> List[Tuple[int, int, int, float, Optional[List[int]]]]:
"""Modified version of an excellent script from Spotify/basic_pitch!! Thank you!!!!
Given note events and contours, estimate pitch bends per note.
Pitch bends are represented as a sequence of evenly spaced midi pitch bend control units.
The time stamps of each pitch bend can be inferred by computing an evenly spaced grid between
the start and end times of each note event.
Args:
contours: Matrix of estimated pitch contours
note_events: note event tuple
timing_refinement_range: if > 0, refine onset/offset boundaries with f0 confidence
to_midi: whether to convert pitch bends to midi pitch bends. If False, return pitch estimates in the format
[time (index), pitch (Hz), confidence in range [0, 1]].
Returns:
note events with pitch bends
"""
f0_matrix = [] # [time (index), pitch (Hz), confidence in range [0, 1]]
note_events_with_pitch_bends = []
for start_idx, end_idx, pitch_midi, amplitude in note_events:
if timing_refinement_range:
start_idx = np.max([0, start_idx - timing_refinement_range])
end_idx = np.min([contours.shape[0], end_idx + timing_refinement_range])
freq_idx = int(np.round(self.midi_pitch_to_contour_bin(pitch_midi)))
freq_start_idx = np.max([freq_idx - self.labeling.f0_tolerance_bins, 0])
freq_end_idx = np.min([self.labeling.f0_n_bins, freq_idx + self.labeling.f0_tolerance_bins + 1])
trans_start_idx = np.max([0, self.labeling.f0_tolerance_bins - freq_idx])
trans_end_idx = (2 * self.labeling.f0_tolerance_bins + 1) - \
np.max([0, freq_idx - (self.labeling.f0_n_bins - self.labeling.f0_tolerance_bins - 1)])
# apply regional viterbi to estimate the intonation
# observation probabilities come from the f0_roll matrix
observation = contours[start_idx:end_idx, freq_start_idx:freq_end_idx]
observation = observation / observation.sum(axis=1)[:, None]
observation[np.isnan(observation.sum(axis=1)), :] = np.ones(freq_end_idx - freq_start_idx) * 1 / (
freq_end_idx - freq_start_idx)
# transition probabilities assure continuity
transition = self.labeling.f0_transition_matrix[trans_start_idx:trans_end_idx,
trans_start_idx:trans_end_idx] + 1e-6
transition = transition / np.sum(transition, axis=1)[:, None]
path = viterbi_discriminative(observation.T / observation.sum(axis=1), transition) + freq_start_idx
cents = np.array([self.labeling.f0_label2c(contours[i + start_idx, :], path[i]) for i in range(len(path))])
bends = cents - self.labeling.midi_centers_c[pitch_midi - self.labeling.midi_centers[0]]
if to_midi:
bends = (bends * 4096 / 100).astype(int)
bends[bends > 8191] = 8191
bends[bends < -8192] = -8192
if timing_refinement_range:
confidences = np.array([contours[i + start_idx, path[i]] for i in range(len(path))])
threshold = np.median(confidences)
threshold = (np.median(confidences > threshold) + threshold) / 2 # some magic
median_kernel = 2 * (timing_refinement_range // 2) + 1 # some more magic
confidences = medfilt(confidences, kernel_size=median_kernel)
conf_bool = confidences > threshold
onset_idx = np.argmax(conf_bool)
offset_idx = len(confidences) - np.argmax(conf_bool[::-1])
bends = bends[onset_idx:offset_idx]
start_idx = start_idx + onset_idx
end_idx = start_idx + offset_idx
note_events_with_pitch_bends.append((start_idx, end_idx, pitch_midi, amplitude, bends))
else:
confidences = np.array([contours[i + start_idx, path[i]] for i in range(len(path))])
time_idx = np.arange(len(path)) + start_idx
# f0_hz = self.labeling.f0_c2hz(cents)
possible_f0s = np.array([time_idx, cents, confidences]).T
f0_matrix.append(possible_f0s[np.abs(bends)<100]) # filter out pitch bends that are too large
if not to_midi:
return np.vstack(f0_matrix)
else:
return note_events_with_pitch_bends
def midi_pitch_to_contour_bin(self, pitch_midi: int) -> np.array:
"""Convert midi pitch to corresponding index in contour matrix
Args:
pitch_midi: pitch in midi
Returns:
index in contour matrix
"""
pitch_hz = midi_to_hz(pitch_midi)
return np.argmin(np.abs(self.labeling.f0_centers_hz - pitch_hz))
# SPOTIFY
def get_inferred_onsets(onset_roll: np.array, note_roll: np.array, n_diff: int = 2) -> np.array:
"""
Infer onsets from large changes in note roll matrix amplitudes.
Modified from https://github.com/spotify/basic-pitch/blob/main/basic_pitch/note_creation.py
:param onset_roll: Onset activation matrix (n_times, n_freqs).
:param note_roll: Frame-level note activation matrix (n_times, n_freqs).
:param n_diff: Differences used to detect onsets.
:return: The maximum between the predicted onsets and its differences.
"""
diffs = []
for n in range(1, n_diff + 1):
frames_appended = np.concatenate([np.zeros((n, note_roll.shape[1])), note_roll])
diffs.append(frames_appended[n:, :] - frames_appended[:-n, :])
frame_diff = np.min(diffs, axis=0)
frame_diff[frame_diff < 0] = 0
frame_diff[:n_diff, :] = 0
frame_diff = np.max(onset_roll) * frame_diff / np.max(frame_diff) # rescale to have the same max as onsets
max_onsets_diff = np.max([onset_roll, frame_diff],
axis=0) # use the max of the predicted onsets and the differences
return max_onsets_diff
def spotify_create_notes(
note_roll: np.array,
onset_roll: np.array,
onset_thresh: float,
frame_thresh: float,
min_note_len: int,
infer_onsets: bool,
note_low : int, #self.labeling.midi_centers[0]
note_high : int, #self.labeling.midi_centers[-1],
melodia_trick: bool = True,
energy_tol: int = 11,
) -> List[Tuple[int, int, int, float]]:
"""Decode raw model output to polyphonic note events
Modified from https://github.com/spotify/basic-pitch/blob/main/basic_pitch/note_creation.py
Args:
note_roll: Frame activation matrix (n_times, n_freqs).
onset_roll: Onset activation matrix (n_times, n_freqs).
onset_thresh: Minimum amplitude of an onset activation to be considered an onset.
frame_thresh: Minimum amplitude of a frame activation for a note to remain "on".
min_note_len: Minimum allowed note length in frames.
infer_onsets: If True, add additional onsets when there are large differences in frame amplitudes.
melodia_trick : Whether to use the melodia trick to better detect notes.
energy_tol: Drop notes below this energy.
Returns:
list of tuples [(start_time_frames, end_time_frames, pitch_midi, amplitude)]
representing the note events, where amplitude is a number between 0 and 1
"""
n_frames = note_roll.shape[0]
# use onsets inferred from frames in addition to the predicted onsets
if infer_onsets:
onset_roll = get_inferred_onsets(onset_roll, note_roll)
peak_thresh_mat = np.zeros(onset_roll.shape)
peaks = argrelmax(onset_roll, axis=0)
peak_thresh_mat[peaks] = onset_roll[peaks]
onset_idx = np.where(peak_thresh_mat >= onset_thresh)
onset_time_idx = onset_idx[0][::-1] # sort to go backwards in time
onset_freq_idx = onset_idx[1][::-1] # sort to go backwards in time
remaining_energy = np.zeros(note_roll.shape)
remaining_energy[:, :] = note_roll[:, :]
# loop over onsets
note_events = []
for note_start_idx, freq_idx in zip(onset_time_idx, onset_freq_idx):
# if we're too close to the end of the audio, continue
if note_start_idx >= n_frames - 1:
continue
# find time index at this frequency band where the frames drop below an energy threshold
i = note_start_idx + 1
k = 0 # number of frames since energy dropped below threshold
while i < n_frames - 1 and k < energy_tol:
if remaining_energy[i, freq_idx] < frame_thresh:
k += 1
else:
k = 0
i += 1
i -= k # go back to frame above threshold
# if the note is too short, skip it
if i - note_start_idx <= min_note_len:
continue
remaining_energy[note_start_idx:i, freq_idx] = 0
if freq_idx < note_high:
remaining_energy[note_start_idx:i, freq_idx + 1] = 0
if freq_idx > note_low:
remaining_energy[note_start_idx:i, freq_idx - 1] = 0
# add the note
amplitude = np.mean(note_roll[note_start_idx:i, freq_idx])
note_events.append(
(
note_start_idx,
i,
freq_idx + note_low,
amplitude,
)
)
if melodia_trick:
energy_shape = remaining_energy.shape
while np.max(remaining_energy) > frame_thresh:
i_mid, freq_idx = np.unravel_index(np.argmax(remaining_energy), energy_shape)
remaining_energy[i_mid, freq_idx] = 0
# forward pass
i = i_mid + 1
k = 0
while i < n_frames - 1 and k < energy_tol:
if remaining_energy[i, freq_idx] < frame_thresh:
k += 1
else:
k = 0
remaining_energy[i, freq_idx] = 0
if freq_idx < note_high:
remaining_energy[i, freq_idx + 1] = 0
if freq_idx > note_low:
remaining_energy[i, freq_idx - 1] = 0
i += 1
i_end = i - 1 - k # go back to frame above threshold
# backward pass
i = i_mid - 1
k = 0
while i > 0 and k < energy_tol:
if remaining_energy[i, freq_idx] < frame_thresh:
k += 1
else:
k = 0
remaining_energy[i, freq_idx] = 0
if freq_idx < note_high:
remaining_energy[i, freq_idx + 1] = 0
if freq_idx > note_low:
remaining_energy[i, freq_idx - 1] = 0
i -= 1
i_start = i + 1 + k # go back to frame above threshold
assert i_start >= 0, "{}".format(i_start)
assert i_end < n_frames
if i_end - i_start <= min_note_len:
# note is too short, skip it
continue
# add the note
amplitude = np.mean(note_roll[i_start:i_end, freq_idx])
note_events.append(
(
i_start,
i_end,
freq_idx + note_low,
amplitude,
)
)
return note_events
# TIKTOK
def note_detection_with_onset_offset_regress(frame_output, onset_output,
onset_shift_output, offset_output, offset_shift_output, velocity_output,
frame_threshold):
"""Process prediction matrices to note events information.
First, detect onsets with onset outputs. Then, detect offsets
with frame and offset outputs.
Args:
frame_output: (frames_num,)
onset_output: (frames_num,)
onset_shift_output: (frames_num,)
offset_output: (frames_num,)
offset_shift_output: (frames_num,)
velocity_output: (frames_num,)
frame_threshold: float
Returns:
output_tuples: list of [bgn, fin, onset_shift, offset_shift, normalized_velocity],
e.g., [
[1821, 1909, 0.47498, 0.3048533, 0.72119445],
[1909, 1947, 0.30730522, -0.45764327, 0.64200014],
...]
"""
output_tuples = []
bgn = None
frame_disappear = None
offset_occur = None
for i in range(onset_output.shape[0]):
if onset_output[i] == 1:
"""Onset detected"""
if bgn:
"""Consecutive onsets. E.g., pedal is not released, but two
consecutive notes being played."""
fin = max(i - 1, 0)
output_tuples.append([bgn, fin, onset_shift_output[bgn],
0, velocity_output[bgn]])
frame_disappear, offset_occur = None, None
bgn = i
if bgn and i > bgn:
"""If onset found, then search offset"""
if frame_output[i] <= frame_threshold and not frame_disappear:
"""Frame disappear detected"""
frame_disappear = i
if offset_output[i] == 1 and not offset_occur:
"""Offset detected"""
offset_occur = i
if frame_disappear:
if offset_occur and offset_occur - bgn > frame_disappear - offset_occur:
"""bgn --------- offset_occur --- frame_disappear"""
fin = offset_occur
else:
"""bgn --- offset_occur --------- frame_disappear"""
fin = frame_disappear
output_tuples.append([bgn, fin, onset_shift_output[bgn],
offset_shift_output[fin], velocity_output[bgn]])
bgn, frame_disappear, offset_occur = None, None, None
if bgn and (i - bgn >= 600 or i == onset_output.shape[0] - 1):
"""Offset not detected"""
fin = i
output_tuples.append([bgn, fin, onset_shift_output[bgn],
offset_shift_output[fin], velocity_output[bgn]])
bgn, frame_disappear, offset_occur = None, None, None
# Sort pairs by onsets
output_tuples.sort(key=lambda pair: pair[0])
return output_tuples
class RegressionPostProcessor(object):
def __init__(self, frames_per_second, classes_num, onset_threshold,
offset_threshold, frame_threshold, pedal_offset_threshold,
begin_note):
"""Postprocess the output probabilities of a transription model to MIDI
events.
Args:
frames_per_second: float
classes_num: int
onset_threshold: float
offset_threshold: float
frame_threshold: float
pedal_offset_threshold: float
"""
self.frames_per_second = frames_per_second
self.classes_num = classes_num
self.onset_threshold = onset_threshold
self.offset_threshold = offset_threshold
self.frame_threshold = frame_threshold
self.pedal_offset_threshold = pedal_offset_threshold
self.begin_note = begin_note
self.velocity_scale = 128
def output_dict_to_midi_events(self, output_dict):
"""Main function. Post process model outputs to MIDI events.
Args:
output_dict: {
'reg_onset_output': (segment_frames, classes_num),
'reg_offset_output': (segment_frames, classes_num),
'frame_output': (segment_frames, classes_num),
'velocity_output': (segment_frames, classes_num),
'reg_pedal_onset_output': (segment_frames, 1),
'reg_pedal_offset_output': (segment_frames, 1),
'pedal_frame_output': (segment_frames, 1)}
Outputs:
est_note_events: list of dict, e.g. [
{'onset_time': 39.74, 'offset_time': 39.87, 'midi_note': 27, 'velocity': 83},
{'onset_time': 11.98, 'offset_time': 12.11, 'midi_note': 33, 'velocity': 88}]
est_pedal_events: list of dict, e.g. [
{'onset_time': 0.17, 'offset_time': 0.96},
{'osnet_time': 1.17, 'offset_time': 2.65}]
"""
output_dict['frame_output'] = output_dict['note']
output_dict['velocity_output'] = output_dict['note']
output_dict['reg_onset_output'] = output_dict['onset']
output_dict['reg_offset_output'] = output_dict['offset']
# Post process piano note outputs to piano note and pedal events information
(est_on_off_note_vels, est_pedal_on_offs) = \
self.output_dict_to_note_pedal_arrays(output_dict)
"""est_on_off_note_vels: (events_num, 4), the four columns are: [onset_time, offset_time, piano_note, velocity],
est_pedal_on_offs: (pedal_events_num, 2), the two columns are: [onset_time, offset_time]"""
# Reformat notes to MIDI events
est_note_events = self.detected_notes_to_events(est_on_off_note_vels)
if est_pedal_on_offs is None:
est_pedal_events = None
else:
est_pedal_events = self.detected_pedals_to_events(est_pedal_on_offs)
return est_note_events, est_pedal_events
def output_dict_to_note_pedal_arrays(self, output_dict):
"""Postprocess the output probabilities of a transription model to MIDI
events.
Args:
output_dict: dict, {
'reg_onset_output': (frames_num, classes_num),
'reg_offset_output': (frames_num, classes_num),
'frame_output': (frames_num, classes_num),
'velocity_output': (frames_num, classes_num),
...}
Returns:
est_on_off_note_vels: (events_num, 4), the 4 columns are onset_time,
offset_time, piano_note and velocity. E.g. [
[39.74, 39.87, 27, 0.65],
[11.98, 12.11, 33, 0.69],
...]
est_pedal_on_offs: (pedal_events_num, 2), the 2 columns are onset_time
and offset_time. E.g. [
[0.17, 0.96],
[1.17, 2.65],
...]
"""
# ------ 1. Process regression outputs to binarized outputs ------
# For example, onset or offset of [0., 0., 0.15, 0.30, 0.40, 0.35, 0.20, 0.05, 0., 0.]
# will be processed to [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]
# Calculate binarized onset output from regression output
(onset_output, onset_shift_output) = \
self.get_binarized_output_from_regression(
reg_output=output_dict['reg_onset_output'],
threshold=self.onset_threshold, neighbour=2)
output_dict['onset_output'] = onset_output # Values are 0 or 1
output_dict['onset_shift_output'] = onset_shift_output
# Calculate binarized offset output from regression output
(offset_output, offset_shift_output) = \
self.get_binarized_output_from_regression(
reg_output=output_dict['reg_offset_output'],
threshold=self.offset_threshold, neighbour=4)
output_dict['offset_output'] = offset_output # Values are 0 or 1
output_dict['offset_shift_output'] = offset_shift_output
if 'reg_pedal_onset_output' in output_dict.keys():
"""Pedal onsets are not used in inference. Instead, frame-wise pedal
predictions are used to detect onsets. We empirically found this is
more accurate to detect pedal onsets."""
pass
if 'reg_pedal_offset_output' in output_dict.keys():
# Calculate binarized pedal offset output from regression output
(pedal_offset_output, pedal_offset_shift_output) = \
self.get_binarized_output_from_regression(
reg_output=output_dict['reg_pedal_offset_output'],
threshold=self.pedal_offset_threshold, neighbour=4)
output_dict['pedal_offset_output'] = pedal_offset_output # Values are 0 or 1
output_dict['pedal_offset_shift_output'] = pedal_offset_shift_output
# ------ 2. Process matrices results to event results ------
# Detect piano notes from output_dict
est_on_off_note_vels = self.output_dict_to_detected_notes(output_dict)
est_pedal_on_offs = None
return est_on_off_note_vels, est_pedal_on_offs
def get_binarized_output_from_regression(self, reg_output, threshold, neighbour):
"""Calculate binarized output and shifts of onsets or offsets from the
regression results.
Args:
reg_output: (frames_num, classes_num)
threshold: float
neighbour: int
Returns:
binary_output: (frames_num, classes_num)
shift_output: (frames_num, classes_num)
"""
binary_output = np.zeros_like(reg_output)
shift_output = np.zeros_like(reg_output)
(frames_num, classes_num) = reg_output.shape
for k in range(classes_num):
x = reg_output[:, k]
for n in range(neighbour, frames_num - neighbour):
if x[n] > threshold and self.is_monotonic_neighbour(x, n, neighbour):
binary_output[n, k] = 1
"""See Section III-D in [1] for deduction.
[1] Q. Kong, et al., High-resolution Piano Transcription
with Pedals by Regressing Onsets and Offsets Times, 2020."""
if x[n - 1] > x[n + 1]:
shift = (x[n + 1] - x[n - 1]) / (x[n] - x[n + 1]) / 2
else:
shift = (x[n + 1] - x[n - 1]) / (x[n] - x[n - 1]) / 2
shift_output[n, k] = shift
return binary_output, shift_output
def is_monotonic_neighbour(self, x, n, neighbour):
"""Detect if values are monotonic in both side of x[n].
Args:
x: (frames_num,)
n: int
neighbour: int
Returns:
monotonic: bool
"""
monotonic = True
for i in range(neighbour):
if x[n - i] < x[n - i - 1]:
monotonic = False
if x[n + i] < x[n + i + 1]:
monotonic = False
return monotonic
def output_dict_to_detected_notes(self, output_dict):
"""Postprocess output_dict to piano notes.
Args:
output_dict: dict, e.g. {
'onset_output': (frames_num, classes_num),
'onset_shift_output': (frames_num, classes_num),
'offset_output': (frames_num, classes_num),
'offset_shift_output': (frames_num, classes_num),
'frame_output': (frames_num, classes_num),
'onset_output': (frames_num, classes_num),
...}
Returns:
est_on_off_note_vels: (notes, 4), the four columns are onsets, offsets,
MIDI notes and velocities. E.g.,
[[39.7375, 39.7500, 27., 0.6638],
[11.9824, 12.5000, 33., 0.6892],
...]
"""
est_tuples = []
est_midi_notes = []
classes_num = output_dict['frame_output'].shape[-1]
for piano_note in range(classes_num):
"""Detect piano notes"""
est_tuples_per_note = note_detection_with_onset_offset_regress(
frame_output=output_dict['frame_output'][:, piano_note],
onset_output=output_dict['onset_output'][:, piano_note],
onset_shift_output=output_dict['onset_shift_output'][:, piano_note],
offset_output=output_dict['offset_output'][:, piano_note],
offset_shift_output=output_dict['offset_shift_output'][:, piano_note],
velocity_output=output_dict['velocity_output'][:, piano_note],
frame_threshold=self.frame_threshold)
est_tuples += est_tuples_per_note
est_midi_notes += [piano_note + self.begin_note] * len(est_tuples_per_note)
est_tuples = np.array(est_tuples) # (notes, 5)
"""(notes, 5), the five columns are onset, offset, onset_shift,
offset_shift and normalized_velocity"""
est_midi_notes = np.array(est_midi_notes) # (notes,)
onset_times = (est_tuples[:, 0] + est_tuples[:, 2]) / self.frames_per_second
offset_times = (est_tuples[:, 1] + est_tuples[:, 3]) / self.frames_per_second
velocities = est_tuples[:, 4]
est_on_off_note_vels = np.stack((onset_times, offset_times, est_midi_notes, velocities), axis=-1)
"""(notes, 3), the three columns are onset_times, offset_times and velocity."""
est_on_off_note_vels = est_on_off_note_vels.astype(np.float32)
return est_on_off_note_vels
def detected_notes_to_events(self, est_on_off_note_vels):
"""Reformat detected notes to midi events.
Args:
est_on_off_vels: (notes, 3), the three columns are onset_times,
offset_times and velocity. E.g.
[[32.8376, 35.7700, 0.7932],
[37.3712, 39.9300, 0.8058],
...]
Returns:
midi_events, list, e.g.,
[{'onset_time': 39.7376, 'offset_time': 39.75, 'midi_note': 27, 'velocity': 84},
{'onset_time': 11.9824, 'offset_time': 12.50, 'midi_note': 33, 'velocity': 88},
...]
"""
midi_events = []
for i in range(est_on_off_note_vels.shape[0]):
midi_events.append({
'onset_time': est_on_off_note_vels[i][0],
'offset_time': est_on_off_note_vels[i][1],
'midi_note': int(est_on_off_note_vels[i][2]),
'velocity': int(est_on_off_note_vels[i][3] * self.velocity_scale)})
return midi_events
def sync_visualize_step1(cost_matrices: List,
num_rows: int,
num_cols: int,
anchors: np.ndarray,
wp: np.ndarray) -> Tuple[plt.Figure, plt.Axes]:
fig, ax = plt.subplots(1, 1, dpi=72)
ax = __visualize_cost_matrices(ax, cost_matrices)
__visualize_constraint_rectangles(anchors[[1, 0], :],
edgecolor='firebrick')
__visualize_path_in_matrix(ax=ax,
wp=wp,
axisX=np.arange(0, num_rows),
axisY=np.arange(0, num_cols),
path_color='firebrick')
return fig, ax
def sync_visualize_step2(ax: plt.Axes,
cost_matrices: list,
wp_step2: np.ndarray,
wp_step1: np.ndarray,
num_rows_step1: int,
num_cols_step1: int,
anchors_step1: np.ndarray,
neighboring_anchors: np.ndarray,
plot_title: str = ""):
offset_x = neighboring_anchors[0, 0] - 1
offset_y = neighboring_anchors[1, 0] - 1
ax = __visualize_cost_matrices(ax=ax,
cost_matrices=cost_matrices,
offset_x=offset_x,
offset_y=offset_y)
__visualize_constraint_rectangles(anchors_step1[[1, 0], :],
edgecolor='firebrick')
__visualize_path_in_matrix(ax=ax,
wp=wp_step1,
axisX=np.arange(0, num_rows_step1),
axisY=np.arange(0, num_cols_step1),
path_color='firebrick')
__visualize_constraint_rectangles(neighboring_anchors[[1, 0], :] - 1,
edgecolor='orangered',
linestyle='--')
__visualize_path_in_matrix(ax=ax,
wp=wp_step2,
axisX=np.arange(0, num_rows_step1),
axisY=np.arange(0, num_cols_step1),
path_color='orangered')
ax.set_title(plot_title)
ax.set_ylabel("Version 1 (frames)")
ax.set_xlabel("Version 2 (frames)")
ax = plt.gca() # get the current axes
pcm = None
for pcm in ax.get_children():
if isinstance(pcm, ScalarMappable):
break
plt.colorbar(pcm, ax=ax)
plt.tight_layout()
plt.show()
def __size_dtw_matrices(dtw_matrices: List) -> Tuple[List[np.ndarray], List[np.ndarray]]:
"""Gives information about the dimensionality of a DTW matrix
given in form of a list matrix
Parameters
----------
dtw_matrices: list
The DTW matrix (cost matrix or accumulated cost matrix) given in form a list.
Returns
-------
axisX_list: list
A list containing a horizontal axis for each of the sub matrices
which specifies the horizontal position of the respective submatrix
in the overall cost matrix.
axis_y_list: list
A list containing a vertical axis for each of the
sub matrices which specifies the vertical position of the
respective submatrix in the overall cost matrix.
"""
num_matrices = len(dtw_matrices)
size_list = [dtw_mat.shape for dtw_mat in dtw_matrices]
axis_x_list = list()
axis_y_list = list()
x_acc = 0
y_acc = 0
for i in range(num_matrices):
curr_size_list = size_list[i]
axis_x_list.append(np.arange(x_acc, x_acc + curr_size_list[0]))
axis_y_list.append(np.arange(y_acc, y_acc + curr_size_list[1]))
x_acc += curr_size_list[0] - 1
y_acc += curr_size_list[1] - 1
return axis_x_list, axis_y_list
def __visualize_cost_matrices(ax: plt.Axes,
cost_matrices: list = None,
offset_x: float = 0.0,
offset_y: float = 0.0) -> plt.Axes:
"""Visualizes cost matrices
Parameters
----------
ax : axes
The Axes instance to plot on
cost_matrices : list
List of DTW cost matrices.
offset_x : float
Offset on the x axis.
offset_y : float
Offset on the y axis.
Returns
-------
ax: axes
The Axes instance to plot on
"""
x_ax, y_ax = __size_dtw_matrices(dtw_matrices=cost_matrices)
for i, cur_cost in enumerate(cost_matrices[::-1]):
curr_x_ax = x_ax[i] + offset_x
curr_y_ax = y_ax[i] + offset_y
cur_cost = cost_matrices[i]
ax.imshow(cur_cost, cmap='gray_r', aspect='auto', origin='lower',
extent=[curr_y_ax[0], curr_y_ax[-1], curr_x_ax[0], curr_x_ax[-1]])
return ax
def __visualize_path_in_matrix(ax,
wp: np.ndarray = None,
axisX: np.ndarray = None,
axisY: np.ndarray = None,
path_color: str = 'r'):
"""Plots a warping path on top of a given matrix. The matrix is
usually an accumulated cost matrix.
Parameters
----------
ax : axes
The Axes instance to plot on
wp : np.ndarray
Warping path
axisX : np.ndarray
Array of X axis
axisY : np.ndarray
Array of Y axis
path_color : str
Color of the warping path to be plotted. (default: r)
"""
assert axisX is not None and isinstance(axisX, np.ndarray), 'axisX must be a numpy array!'
assert axisY is not None and isinstance(axisY, np.ndarray), 'axisY must be a numpy array!'
wp = wp.astype(int)
ax.plot(axisY[wp[1, :]], axisX[wp[0, :]], '-k', linewidth=5)
ax.plot(axisY[wp[1, :]], axisX[wp[0, :]], color=path_color, linewidth=3)
def __visualize_constraint_rectangles(anchors: np.ndarray,
linestyle: str = '-',
edgecolor: str = 'royalblue',
linewidth: float = 1.0):
for k in range(anchors.shape[1]-1):
a1 = anchors[:, k]
a2 = anchors[:, k + 1]
# a rectangle is defined by [x y width height]
x = a1[0]
y = a1[1]
w = a2[0] - a1[0] + np.finfo(float).eps
h = a2[1] - a1[1] + np.finfo(float).eps
rect = Rectangle((x, y), w, h,
linewidth=linewidth,
edgecolor=edgecolor,
linestyle=linestyle,
facecolor='none')
plt.gca().add_patch(rect)
def project_alignment_on_a_new_feature_rate(alignment: np.ndarray,
feature_rate_old: int,
feature_rate_new: int,
cost_matrix_size_old: tuple = (),
cost_matrix_size_new: tuple = ()) -> np.ndarray:
"""Projects an alignment computed for a cost matrix on a certain
feature resolution on a cost matrix having a different feature
resolution.
Parameters
----------
alignment : np.ndarray [shape=(2, N)]
Alignment matrix
feature_rate_old : int
Feature rate of the old cost matrix
feature_rate_new : int
Feature rate of the new cost matrix
cost_matrix_size_old : tuple
Size of the old cost matrix. Possibly needed to deal with border cases
cost_matrix_size_new : tuple
Size of the new cost matrix. Possibly needed to deal with border cases
Returns
-------
np.ndarray [shape=(2, N)]
Anchor sequence for the new cost matrix
"""
# Project the alignment on the new feature rate
fac = feature_rate_new / feature_rate_old
anchors = np.round(alignment * fac) + 1
# In case the sizes of the cost matrices are given explicitly and the
# alignment specifies to align the first and last elements, handle this case
# separately since this might cause problems in the general projection
# procedure.
if cost_matrix_size_old is not None and cost_matrix_size_new is not None:
if np.array_equal(alignment[:, 0], np.array([0, 0])):
anchors[:, 0] = np.array([1, 1])
if np.array_equal(alignment[:, -1], np.array(cost_matrix_size_old) - 1):
anchors[:, -1] = np.array(cost_matrix_size_new)
return anchors - 1
def derive_anchors_from_projected_alignment(projected_alignment: np.ndarray,
threshold: int) -> np.ndarray:
"""Derive anchors from a projected alignment such that the area of the rectangle
defined by two subsequent anchors a1 and a2 is below a given threshold.
Parameters
----------
projected_alignment : np.ndarray [shape=(2, N)]
Projected alignment array
threshold : int
Maximum area of the constraint rectangle
Returns
-------
anchors_res : np.ndarray [shape=(2, M)]
Resulting anchor sequence
"""
L = projected_alignment.shape[1]
a1 = np.array(projected_alignment[:, 0], copy=True).reshape(-1, 1)
a2 = np.array(projected_alignment[:, -1], copy=True).reshape(-1, 1)
if __compute_area(a1, a2) <= threshold:
anchors_res = np.concatenate([a1, a2], axis=1)
elif L > 2:
center = int(np.floor(L/2 + 1))
a1 = np.array(projected_alignment[:, 0], copy=True).reshape(-1, 1)
a2 = np.array(projected_alignment[:, center - 1], copy=True).reshape(-1, 1)
a3 = np.array(projected_alignment[:, -1], copy=True).reshape(-1, 1)
if __compute_area(a1, a2) > threshold:
anchors_1 = derive_anchors_from_projected_alignment(projected_alignment[:, 0:center], threshold)
else:
anchors_1 = np.concatenate([a1, a2], axis=1)
if __compute_area(a2, a3) > threshold:
anchors_2 = derive_anchors_from_projected_alignment(projected_alignment[:, center - 1:], threshold)
else:
anchors_2 = np.concatenate([a2, a3], axis=1)
anchors_res = np.concatenate([anchors_1, anchors_2[:, 1:]], axis=1)
else:
if __compute_area(a1, a2) > threshold:
print('Only two anchor points are given which do not fulfill the constraint.')
anchors_res = np.concatenate([a1, a2], axis=1)
return anchors_res
def derive_neighboring_anchors(warping_path: np.ndarray,
anchor_indices: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Compute anchor points in the neighborhood of previous anchor points.
Parameters
----------
warping_path : np.ndarray [shape=(2, N)]
Warping path
anchor_indices : np.ndarray
Indices corresponding to the anchor points in the ``warping_path``
Returns
-------
neighboring_anchors : np.ndarray [shape=(2, N-1)]
Sequence of neighboring anchors
neighboring_anchor_indices : np.ndarray
Indices into ``warping path`` corresponding to ``neighboring_anchors``
"""
L = anchor_indices.shape[0]
neighboring_anchor_indices = np.zeros(L-1, dtype=int)
neighboring_anchors = np.zeros((2, L-1), dtype=int)
for k in range(1, L):
i1 = anchor_indices[k-1]
i2 = anchor_indices[k]
neighboring_anchor_indices[k-1] = i1 + np.floor((i2 - i1) / 2)
neighboring_anchors[:, k-1] = warping_path[:, neighboring_anchor_indices[k - 1]]
return neighboring_anchors, neighboring_anchor_indices
@jit(nopython=True)
def __compute_area(a: tuple,
b: tuple):
"""Computes the area between two points, given as tuples"""
return (b[0] - a[0] + 1) * (b[1] - a[1] + 1)
class Transcriber(PitchEstimator):
def __init__(self, labeling, instrument='Violin', sr=16000, window_size=1024, hop_length=160):
super().__init__(labeling, instrument=instrument, sr=sr, window_size=window_size, hop_length=hop_length)
def transcribe(self, audio, batch_size=128, postprocessing='spotify', include_pitch_bends=True, to_midi=True,
debug=False):
"""
Transcribe an audio file or mono waveform in numpy or torch into MIDI with pitch bends.
:param audio: str, pathlib.Path, np.ndarray, or torch.Tensor
:param batch_size: frames to process at once
:param postprocessing: note creation method. 'spotify'(default) or 'tiktok'
:param include_pitch_bends: whether to include pitch bends in the MIDI file
:param to_midi: whether to return a MIDI file or a list of note events (as tuple)
:return: transcribed MIDI file as a pretty_midi.PrettyMIDI object
"""
out = self.predict(audio, batch_size)
if debug:
plt.imshow(out['f0'].T, aspect='auto', origin='lower')
plt.show()
plt.imshow(out['note'].T, aspect='auto', origin='lower')
plt.show()
plt.imshow(out['onset'].T, aspect='auto', origin='lower')
plt.show()
plt.imshow(out['offset'].T, aspect='auto', origin='lower')
plt.show()
if to_midi:
return self.out2midi(out, postprocessing, include_pitch_bends)
else:
return self.out2note(out, postprocessing, include_pitch_bends)
def out2note(self, output: Dict[str, np.array], postprocessing='spotify',
include_pitch_bends: bool = True,
) -> List[Tuple[float, float, int, float, Optional[List[int]]]]:
"""Convert model output to notes
"""
if postprocessing == 'spotify':
estimated_notes = spotify_create_notes(
output["note"],
output["onset"],
note_low=self.labeling.midi_centers[0],
note_high=self.labeling.midi_centers[-1],
onset_thresh=0.5,
frame_thresh=0.3,
infer_onsets=True,
min_note_len=int(np.round(127.70 / 1000 * (self.sr / self.hop_length))), #127.70
melodia_trick=True,
)
if postprocessing == 'rebab':
estimated_notes = spotify_create_notes(
output["note"],
output["onset"],
note_low=self.labeling.midi_centers[0],
note_high=self.labeling.midi_centers[-1],
onset_thresh=0.2,
frame_thresh=0.2,
infer_onsets=True,
min_note_len=int(np.round(127.70 / 1000 * (self.sr / self.hop_length))), #127.70
melodia_trick=True,
)
elif postprocessing == 'tiktok':
postprocessor = RegressionPostProcessor(
frames_per_second=self.sr / self.hop_length,
classes_num=self.labeling.midi_centers.shape[0],
begin_note=self.labeling.midi_centers[0],
onset_threshold=0.2,
offset_threshold=0.2,
frame_threshold=0.3,
pedal_offset_threshold=0.5,
)
tiktok_note_dict, _ = postprocessor.output_dict_to_midi_events(output)
estimated_notes = []
for list_item in tiktok_note_dict:
if list_item['offset_time'] > 0.6 + list_item['onset_time']:
estimated_notes.append((int(np.floor(list_item['onset_time']/(output['time'][1]))),
int(np.ceil(list_item['offset_time']/(output['time'][1]))),
list_item['midi_note'], list_item['velocity']/128))
if include_pitch_bends:
estimated_notes_with_pitch_bend = self.get_pitch_bends(output["f0"], estimated_notes)
else:
estimated_notes_with_pitch_bend = [(note[0], note[1], note[2], note[3], None) for note in estimated_notes]
times_s = output['time']
estimated_notes_time_seconds = [
(times_s[note[0]], times_s[note[1]], note[2], note[3], note[4]) for note in estimated_notes_with_pitch_bend
]
return estimated_notes_time_seconds
def out2midi(self, output: Dict[str, np.array], postprocessing: str = 'spotify', include_pitch_bends: bool = True,
) -> PrettyMIDI:
"""Convert model output to MIDI
Args:
output: A dictionary with shape
{
'frame': array of shape (n_times, n_freqs),
'onset': array of shape (n_times, n_freqs),
'contour': array of shape (n_times, 3*n_freqs)
}
representing the output of the basic pitch model.
postprocessing: spotify or tiktok postprocessing.
include_pitch_bends: If True, include pitch bends.
Returns:
note_events: A list of note event tuples (start_time_s, end_time_s, pitch_midi, amplitude)
"""
estimated_notes_time_seconds = self.out2note(output, postprocessing, include_pitch_bends)
midi_tempo = 120 # todo: infer tempo from the onsets
return self.note2midi(estimated_notes_time_seconds, midi_tempo)
def note2midi(
self, note_events_with_pitch_bends: List[Tuple[float, float, int, float, Optional[List[int]]]],
midi_tempo: float = 120,
):
"""Create a pretty_midi object from note events
:param note_events_with_pitch_bends: list of tuples
[(start_time_seconds, end_time_seconds, pitch_midi, amplitude)]
:param midi_tempo: #todo: infer tempo from the onsets
:return: transcribed MIDI file as a pretty_midi.PrettyMIDI object
"""
mid = PrettyMIDI(initial_tempo=midi_tempo)
program = instrument_name_to_program(self.instrument)
instruments: DefaultDict[int, Instrument] = defaultdict(
lambda: Instrument(program=program)
)
for start_time, end_time, note_number, amplitude, pitch_bend in note_events_with_pitch_bends:
instrument = instruments[note_number]
note = Note(
velocity=int(np.round(127 * amplitude)),
pitch=note_number,
start=start_time,
end=end_time,
)
instrument.notes.append(note)
if not isinstance(pitch_bend, np.ndarray):
continue
pitch_bend_times = np.linspace(start_time, end_time, len(pitch_bend))
for pb_time, pb_midi in zip(pitch_bend_times, pitch_bend):
instrument.pitch_bends.append(PitchBend(pb_midi, pb_time))
mid.instruments.extend(instruments.values())
return mid
def sync_via_mrmsdtw_with_anchors(f_chroma1: np.ndarray,
f_chroma2: np.ndarray,
f_onset1: np.ndarray = None,
f_onset2: np.ndarray = None,
input_feature_rate: float = 50,
step_sizes: np.ndarray = np.array([[1, 0], [0, 1], [1, 1]], np.int32),
step_weights: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64),
threshold_rec: int = 10000,
win_len_smooth: np.ndarray = np.array([201, 101, 21, 1]),
downsamp_smooth: np.ndarray = np.array([50, 25, 5, 1]),
verbose: bool = False,
dtw_implementation: str = 'synctoolbox',
normalize_chroma: bool = True,
chroma_norm_ord: int = 2,
chroma_norm_threshold: float = 0.001,
visualization_title: str = "MrMsDTW result",
anchor_pairs: List[Tuple] = None,
linear_inp_idx: List[int] = [],
alpha=0.5) -> np.ndarray:
"""Compute memory-restricted multi-scale DTW (MrMsDTW) using chroma and (optionally) onset features.
MrMsDTW is performed on multiple levels that get progressively finer, with rectangular constraint
regions defined by the alignment found on the previous, coarser level.
If onset features are provided, these are used on the finest level in addition to chroma
to provide higher synchronization accuracy.
Parameters
----------
f_chroma1 : np.ndarray [shape=(12, N)]
Chroma feature matrix of the first sequence
f_chroma2 : np.ndarray [shape=(12, M)]
Chroma feature matrix of the second sequence
f_onset1 : np.ndarray [shape=(L, N)]
Onset feature matrix of the first sequence (optional, default: None)
f_onset2 : np.ndarray [shape=(L, M)]
Onset feature matrix of the second sequence (optional, default: None)
input_feature_rate: int
Input feature rate of the chroma features (default: 50)
step_sizes: np.ndarray
DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]]))
step_weights: np.ndarray
DTW step weights (np.array([1.0, 1.0, 1.0]))
threshold_rec: int
Defines the maximum area that is spanned by the rectangle of two
consecutive elements in the alignment (default: 10000)
win_len_smooth : np.ndarray
Window lengths for chroma feature smoothing (default: np.array([201, 101, 21, 1]))
downsamp_smooth : np.ndarray
Downsampling factors (default: np.array([50, 25, 5, 1]))
verbose : bool
Set `True` for visualization (default: False)
dtw_implementation : str
DTW implementation, librosa or synctoolbox (default: synctoolbox)
normalize_chroma : bool
Set `True` to normalize input chroma features after each downsampling
and smoothing operation.
chroma_norm_ord: int
Order of chroma normalization, relevant if ``normalize_chroma`` is True.
(default: 2)
chroma_norm_threshold: float
If the norm falls below threshold for a feature vector, then the
normalized feature vector is set to be the unit vector. Relevant, if
``normalize_chroma`` is True (default: 0.001)
visualization_title : str
Title for the visualization plots. Only relevant if 'verbose' is True
(default: "MrMsDTW result")
anchor_pairs: List[Tuple]
Anchor pairs given in seconds. Note that
* (0, 0) and (<audio-len1>, <audio-len2>) are not allowed.
* Anchors must be monotonously increasing.
linear_inp_idx: List[int]
List of the indices of intervals created by anchor pairs, for which
MrMsDTW shouldn't be run, e.g., if the interval only involves silence.
0 ap1 ap2 ap3
| | | |
| idx0 | idx1 | idx2 | idx3 OR idx-1
| | | |
Note that index -1 corresponds to the last interval, which begins with
the last anchor pair until the end of the audio files.
alpha: float
Coefficient for the Chroma cost matrix in the finest scale of the MrMsDTW algorithm.
C = alpha * C_Chroma + (1 - alpha) * C_act (default: 0.5)
Returns
-------
wp : np.ndarray [shape=(2, T)]
Resulting warping path which indicates synchronized indices.
"""
if anchor_pairs is None:
wp = sync_via_mrmsdtw(f_chroma1=f_chroma1,
f_chroma2=f_chroma2,
f_onset1=f_onset1,
f_onset2=f_onset2,
input_feature_rate=input_feature_rate,
step_sizes=step_sizes,
step_weights=step_weights,
threshold_rec=threshold_rec,
win_len_smooth=win_len_smooth,
downsamp_smooth=downsamp_smooth,
verbose=verbose,
dtw_implementation=dtw_implementation,
normalize_chroma=normalize_chroma,
chroma_norm_ord=chroma_norm_ord,
chroma_norm_threshold=chroma_norm_threshold,
visualization_title=visualization_title,
alpha=alpha)
else:
# constant_intervals = [((0, x1), (0, y1), False),
# ((x1, x2), (y1, y2), True),
# ((x2, -1), (y2, -1), False)]
wp = None
if verbose:
print('Anchor points are given!')
__check_anchor_pairs(anchor_pairs, f_chroma1.shape[1], f_chroma2.shape[1], input_feature_rate)
# Add ending as the anchor point
anchor_pairs.append((-1, -1))
prev_a1 = 0
prev_a2 = 0
for idx, anchor_pair in enumerate(anchor_pairs):
cur_a1, cur_a2 = anchor_pair
# Split the features
f_chroma1_split, f_onset1_split, f_chroma2_split, f_onset2_split = __split_features(f_chroma1,
f_onset1,
f_chroma2,
f_onset2,
cur_a1,
cur_a2,
prev_a1,
prev_a2,
input_feature_rate)
if idx in linear_inp_idx or idx == len(anchor_pairs) - 1 and -1 in linear_inp_idx:
# Generate a diagonal warping path, if the algorithm is not supposed to executed.
# A typical scenario is the silence breaks which are enclosed by two anchor points.
if verbose:
print('A diagonal warping path is generated for the interval \n\t Feature sequence 1: %.2f - %.2f'
'\n\t Feature sequence 2: %.2f - %.2f\n' % (prev_a1, cur_a1, prev_a2, cur_a2))
wp_cur = __diagonal_warping_path(f_chroma1_split, f_chroma2_split)
else:
if verbose:
if cur_a1 != -1 and cur_a2 != -1:
print('MrMsDTW is applied for the interval \n\t Feature sequence 1: %.2f - %.2f'
'\n\t Feature sequence 2: %.2f - %.2f\n' % (prev_a1, cur_a1, prev_a2, cur_a2))
else:
print('MrMsDTW is applied for the interval \n\t Feature sequence 1: %.2f - end'
'\n\t Feature sequence 2: %.2f - end\n' % (prev_a1, prev_a2))
wp_cur = sync_via_mrmsdtw(f_chroma1=f_chroma1_split,
f_chroma2=f_chroma2_split,
f_onset1=f_onset1_split,
f_onset2=f_onset2_split,
input_feature_rate=input_feature_rate,
step_sizes=step_sizes,
step_weights=step_weights,
threshold_rec=threshold_rec,
win_len_smooth=win_len_smooth,
downsamp_smooth=downsamp_smooth,
verbose=verbose,
dtw_implementation=dtw_implementation,
normalize_chroma=normalize_chroma,
chroma_norm_ord=chroma_norm_ord,
chroma_norm_threshold=chroma_norm_threshold,
alpha=alpha)
if wp is None:
wp = np.array(wp_cur, copy=True)
# Concatenate warping paths
else:
wp = np.concatenate([wp, wp_cur + wp[:, -1].reshape(2, 1) + 1], axis=1)
prev_a1 = cur_a1
prev_a2 = cur_a2
anchor_pairs.pop()
return wp
def sync_via_mrmsdtw(f_chroma1: np.ndarray,
f_chroma2: np.ndarray,
f_onset1: np.ndarray = None,
f_onset2: np.ndarray = None,
input_feature_rate: float = 50,
step_sizes: np.ndarray = np.array([[1, 0], [0, 1], [1, 1]], np.int32),
step_weights: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64),
threshold_rec: int = 10000,
win_len_smooth: np.ndarray = np.array([201, 101, 21, 1]),
downsamp_smooth: np.ndarray = np.array([50, 25, 5, 1]),
verbose: bool = False,
dtw_implementation: str = 'synctoolbox',
normalize_chroma: bool = True,
chroma_norm_ord: int = 2,
chroma_norm_threshold: float = 0.001,
visualization_title: str = "MrMsDTW result",
alpha=0.5) -> np.ndarray:
"""Compute memory-restricted multi-scale DTW (MrMsDTW) using chroma and (optionally) onset features.
MrMsDTW is performed on multiple levels that get progressively finer, with rectangular constraint
regions defined by the alignment found on the previous, coarser level.
If onset features are provided, these are used on the finest level in addition to chroma
to provide higher synchronization accuracy.
Parameters
----------
f_chroma1 : np.ndarray [shape=(12, N)]
Chroma feature matrix of the first sequence
f_chroma2 : np.ndarray [shape=(12, M)]
Chroma feature matrix of the second sequence
f_onset1 : np.ndarray [shape=(L, N)]
Onset feature matrix of the first sequence (optional, default: None)
f_onset2 : np.ndarray [shape=(L, M)]
Onset feature matrix of the second sequence (optional, default: None)
input_feature_rate: int
Input feature rate of the chroma features (default: 50)
step_sizes: np.ndarray
DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]]))
step_weights: np.ndarray
DTW step weights (np.array([1.0, 1.0, 1.0]))
threshold_rec: int
Defines the maximum area that is spanned by the rectangle of two
consecutive elements in the alignment (default: 10000)
win_len_smooth : np.ndarray
Window lengths for chroma feature smoothing (default: np.array([201, 101, 21, 1]))
downsamp_smooth : np.ndarray
Downsampling factors (default: np.array([50, 25, 5, 1]))
verbose : bool
Set `True` for visualization (default: False)
dtw_implementation : str
DTW implementation, librosa or synctoolbox (default: synctoolbox)
normalize_chroma : bool
Set `True` to normalize input chroma features after each downsampling
and smoothing operation.
chroma_norm_ord: int
Order of chroma normalization, relevant if ``normalize_chroma`` is True.
(default: 2)
chroma_norm_threshold: float
If the norm falls below threshold for a feature vector, then the
normalized feature vector is set to be the unit vector. Relevant, if
``normalize_chroma`` is True (default: 0.001)
visualization_title : str
Title for the visualization plots. Only relevant if 'verbose' is True
(default: "MrMsDTW result")
alpha: float
Coefficient for the Chroma cost matrix in the finest scale of the MrMsDTW algorithm.
C = alpha * C_Chroma + (1 - alpha) * C_act (default: 0.5)
Returns
-------
alignment: np.ndarray [shape=(2, T)]
Resulting warping path which indicates synchronized indices.
"""
# If onset features are given as input, high resolution MrMsDTW is activated.
high_res = False
if f_onset1 is not None and f_onset2 is not None:
high_res = True
if high_res and (f_chroma1.shape[1] != f_onset1.shape[1] or f_chroma2.shape[1] != f_onset2.shape[1]):
raise ValueError('Chroma and onset features must be of the same length.')
if downsamp_smooth[-1] != 1 or win_len_smooth[-1] != 1:
raise ValueError('The downsampling factor of the last iteration must be equal to 1, i.e.'
'at the last iteration, it is computed at the input feature rate!')
num_iterations = win_len_smooth.shape[0]
cost_matrix_size_old = tuple()
feature_rate_old = input_feature_rate / downsamp_smooth[0]
alignment = None
total_computation_time = 0.0
# If the area is less than the threshold_rec, don't apply the multiscale DTW.
it = (num_iterations - 1) if __compute_area(f_chroma1, f_chroma2) < threshold_rec else 0
while it < num_iterations:
tic1 = perf_counter()
# Smooth and downsample given raw features
f_chroma1_cur, _ = smooth_downsample_feature(f_chroma1,
input_feature_rate=input_feature_rate,
win_len_smooth=win_len_smooth[it],
downsamp_smooth=downsamp_smooth[it])
f_chroma2_cur, feature_rate_new = smooth_downsample_feature(f_chroma2,
input_feature_rate=input_feature_rate,
win_len_smooth=win_len_smooth[it],
downsamp_smooth=downsamp_smooth[it])
if normalize_chroma:
f_chroma1_cur = normalize_feature(f_chroma1_cur,
norm_ord=chroma_norm_ord,
threshold=chroma_norm_threshold)
f_chroma2_cur = normalize_feature(f_chroma2_cur,
norm_ord=chroma_norm_ord,
threshold=chroma_norm_threshold)
# Project path onto new resolution
cost_matrix_size_new = (f_chroma1_cur.shape[1], f_chroma2_cur.shape[1])
if alignment is None:
# Initialize the alignment with the start and end frames of the feature sequence
anchors = np.array([[0, f_chroma1_cur.shape[1] - 1], [0, f_chroma2_cur.shape[1] - 1]])
else:
projected_alignment = project_alignment_on_a_new_feature_rate(alignment=alignment,
feature_rate_old=feature_rate_old,
feature_rate_new=feature_rate_new,
cost_matrix_size_old=cost_matrix_size_old,
cost_matrix_size_new=cost_matrix_size_new)
anchors = derive_anchors_from_projected_alignment(projected_alignment=projected_alignment,
threshold=threshold_rec)
# Cost matrix and warping path computation
if high_res and it == num_iterations - 1:
# Compute cost considering chroma and pitch onset features and alignment only in the last iteration,
# where the features are at the finest level.
cost_matrices_step1 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur,
f_chroma2=f_chroma2_cur,
f_onset1=f_onset1,
f_onset2=f_onset2,
anchors=anchors,
alpha=alpha)
else:
cost_matrices_step1 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur,
f_chroma2=f_chroma2_cur,
anchors=anchors,
alpha=alpha)
wp_list = compute_warping_paths_from_cost_matrices(cost_matrices_step1,
step_sizes=step_sizes,
step_weights=step_weights,
implementation=dtw_implementation)
# Concatenate warping paths
wp = build_path_from_warping_paths(warping_paths=wp_list,
anchors=anchors)
anchors_step1 = None
wp_step1 = None
num_rows_step1 = 0
num_cols_step1 = 0
ax = None
toc1 = perf_counter()
if verbose and cost_matrices_step1 is not None:
anchors_step1 = np.array(anchors, copy=True)
wp_step1 = np.array(wp, copy=True)
num_rows_step1, num_cols_step1 = np.sum(np.array([dtw_mat.shape for dtw_mat in cost_matrices_step1], int),
axis=0)
fig, ax = sync_visualize_step1(cost_matrices_step1,
num_rows_step1,
num_cols_step1,
anchors,
wp)
tic2 = perf_counter()
# Compute neighboring anchors and refine alignment using local path between neighboring anchors
anchor_indices_in_warping_path = find_anchor_indices_in_warping_path(wp, anchors=anchors)
# Compute neighboring anchors for refinement
neighboring_anchors, neighboring_anchor_indices = \
derive_neighboring_anchors(wp, anchor_indices=anchor_indices_in_warping_path)
if neighboring_anchor_indices.shape[0] > 1 \
and it == num_iterations - 1 and high_res:
cost_matrices_step2 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur,
f_chroma2=f_chroma2_cur,
f_onset1=f_onset1,
f_onset2=f_onset2,
anchors=neighboring_anchors,
alpha=alpha)
else:
cost_matrices_step2 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur,
f_chroma2=f_chroma2_cur,
anchors=neighboring_anchors,
alpha=alpha)
wp_list_refine = compute_warping_paths_from_cost_matrices(cost_matrices=cost_matrices_step2,
step_sizes=step_sizes,
step_weights=step_weights,
implementation=dtw_implementation)
wp = __refine_wp(wp, anchors, wp_list_refine, neighboring_anchors, neighboring_anchor_indices)
toc2 = perf_counter()
computation_time_it = toc2 - tic2 + toc1 - tic1
total_computation_time += computation_time_it
alignment = wp
feature_rate_old = feature_rate_new
cost_matrix_size_old = cost_matrix_size_new
if verbose and cost_matrices_step2 is not None:
sync_visualize_step2(ax,
cost_matrices_step2,
wp,
wp_step1,
num_rows_step1,
num_cols_step1,
anchors_step1,
neighboring_anchors,
plot_title=f"{visualization_title} - Level {it + 1}")
print('Level {} computation time: {:.2f} seconds'.format(it, computation_time_it))
it += 1
if verbose:
print('Computation time of MrMsDTW: {:.2f} seconds'.format(total_computation_time))
return alignment
def __diagonal_warping_path(f1: np.ndarray,
f2: np.ndarray) -> np.ndarray:
"""Generates a diagonal warping path given two feature sequences.
Parameters
----------
f1: np.ndarray [shape=(_, N)]
First feature sequence
f2: np.ndarray [shape=(_, M)]
Second feature sequence
Returns
-------
np.ndarray: Diagonal warping path [shape=(2, T)]
"""
max_size = np.maximum(f1.shape[1], f2.shape[1])
min_size = np.minimum(f1.shape[1], f2.shape[1])
if min_size == 1:
return np.array([max_size - 1, 0]).reshape(-1, 1)
elif max_size == f1.shape[1]:
return np.array([np.round(np.linspace(0, max_size - 1, min_size)), np.linspace(0, min_size - 1, min_size)])
else:
return np.array([np.linspace(0, min_size-1, min_size), np.round(np.linspace(0, max_size - 1, min_size))])
@jit(nopython=True)
def __compute_area(f1, f2):
"""Computes the area of the cost matrix given two feature sequences
Parameters
----------
f1: np.ndarray
First feature sequence
f2: np.ndarray
Second feature sequence
Returns
-------
int: Area of the cost matrix
"""
return f1.shape[1] * f2.shape[1]
def __split_features(f_chroma1: np.ndarray,
f_onset1: np.ndarray,
f_chroma2: np.ndarray,
f_onset2: np.ndarray,
cur_a1: float,
cur_a2: float,
prev_a1: float,
prev_a2: float,
feature_rate: int) -> Tuple[np.ndarray, Optional[np.ndarray], np.ndarray, Optional[np.ndarray]]:
if cur_a1 == -1:
f_chroma1_split = f_chroma1[:, int(prev_a1 * feature_rate):]
if f_onset1 is not None:
f_onset1_split = f_onset1[:, int(prev_a1 * feature_rate):]
else:
f_onset1_split = None
else:
# Split the features
f_chroma1_split = f_chroma1[:, int(prev_a1 * feature_rate):int(cur_a1 * feature_rate)]
if f_onset1 is not None:
f_onset1_split = f_onset1[:, int(prev_a1 * feature_rate):int(cur_a1 * feature_rate)]
else:
f_onset1_split = None
if cur_a2 == -1:
f_chroma2_split = f_chroma2[:, int(prev_a2 * feature_rate):]
if f_onset2 is not None:
f_onset2_split = f_onset2[:, int(prev_a2 * feature_rate):]
else:
f_onset2_split = None
else:
f_chroma2_split = f_chroma2[:, int(prev_a2 * feature_rate):int(cur_a2 * feature_rate)]
if f_onset2 is not None:
f_onset2_split = f_onset2[:, int(prev_a2 * feature_rate):int(cur_a2 * feature_rate)]
else:
f_onset2_split = None
return f_chroma1_split, f_onset1_split, f_chroma2_split, f_onset2_split
def __refine_wp(wp: np.ndarray,
anchors: np.ndarray,
wp_list_refine: List,
neighboring_anchors: np.ndarray,
neighboring_anchor_indices: np.ndarray) -> np.ndarray:
wp_length = wp[:, neighboring_anchor_indices[-1]:].shape[1]
last_list = wp[:, neighboring_anchor_indices[-1]:] - np.tile(
wp[:, neighboring_anchor_indices[-1]].reshape(-1, 1), wp_length)
wp_list_tmp = [wp[:, :neighboring_anchor_indices[0] + 1]] + wp_list_refine + [last_list]
A_tmp = np.concatenate([anchors[:, 0].reshape(-1, 1), neighboring_anchors, anchors[:, -1].reshape(-1, 1)],
axis=1)
wp_res = build_path_from_warping_paths(warping_paths=wp_list_tmp,
anchors=A_tmp)
return wp_res
def __check_anchor_pairs(anchor_pairs: List,
f_len1: int,
f_len2: int,
feature_rate: int):
"""Ensures that the anchors satisfy the conditions
Parameters
----------
anchor_pairs: List[Tuple]
List of anchor pairs
f_len1: int
Length of the first feature sequence
f_len2: int
Length of the second feature sequence
feature_rate: int
Input feature rate of the features
"""
prev_a1 = 0
prev_a2 = 0
for anchor_pair in anchor_pairs:
a1, a2 = anchor_pair
if a1 <= 0 or a2 <= 0:
raise ValueError('Starting point must be a positive number!')
if a1 > f_len1 / feature_rate or a2 > f_len2 / feature_rate:
raise ValueError('Anchor points cannot be greater than the length of the input audio files!')
if a1 == f_len1 and a2 == f_len2:
raise ValueError('Both anchor points cannot be equal to the length of the audio files.')
if a1 == prev_a1 and a2 == prev_a2:
raise ValueError('Duplicate anchor pairs are not allowed!')
if a1 < prev_a1 or a2 < prev_a2:
raise ValueError('Anchor points must be monotonously increasing.')
prev_a1 = a1
prev_a2 = a2
class PerformanceLabel:
"""
The dataset labeling class for performance representations. Currently, includes onset, note, and fine-grained f0
representations. Note min, note max, and f0_bin_per_semitone values are to be arranged per instrument. The default
values are for violin performance analysis. Fretted instruments might not require such f0 resolutions per semitone.
"""
def __init__(self, note_min='F#3', note_max='C8', f0_bins_per_semitone=9, f0_smooth_std_c=None,
onset_smooth_std=0.7, f0_tolerance_c=200):
midi_min = note_name_to_number(note_min)
midi_max = note_name_to_number(note_max)
self.midi_centers = np.arange(midi_min, midi_max)
self.onset_smooth_std=onset_smooth_std # onset smoothing along time axis (compensate for alignment)
f0_hz_range = note_to_hz([note_min, note_max])
f0_c_min, f0_c_max = hz2cents(f0_hz_range)
self.f0_granularity_c = 100/f0_bins_per_semitone
if not f0_smooth_std_c:
f0_smooth_std_c = self.f0_granularity_c * 5/4 # Keep the ratio from the CREPE paper (20 cents and 25 cents)
self.f0_smooth_std_c = f0_smooth_std_c
self.f0_centers_c = np.arange(f0_c_min, f0_c_max, self.f0_granularity_c)
self.f0_centers_hz = 10 * 2 ** (self.f0_centers_c / 1200)
self.f0_n_bins = len(self.f0_centers_c)
self.pdf_normalizer = norm.pdf(0)
self.f0_c2hz = lambda c: 10*2**(c/1200)
self.f0_hz2c = hz2cents
self.midi_centers_c = self.f0_hz2c(midi_to_hz(self.midi_centers))
self.f0_tolerance_bins = int(f0_tolerance_c/self.f0_granularity_c)
self.f0_transition_matrix = gaussian_filter1d(np.eye(2*self.f0_tolerance_bins + 1), 25/self.f0_granularity_c)
def f0_c2label(self, pitch_c):
"""
Convert a single f0 value in cents to a one-hot label vector with smoothing (i.e., create a gaussian blur around
the target f0 bin for regularization and training stability. The blur is controlled by self.f0_smooth_std_c
:param pitch_c: a single pitch value in cents
:return: one-hot label vector with frequency blur
"""
result = norm.pdf((self.f0_centers_c - pitch_c) / self.f0_smooth_std_c).astype(np.float32)
result /= self.pdf_normalizer
return result
def f0_label2c(self, salience, center=None):
"""
Convert the salience predictions to monophonic f0 in cents. Only outputs a single f0 value per frame!
:param salience: f0 activations
:param center: f0 center bin to calculate the weighted average. Use argmax if empty
:return: f0 array per frame (in cents).
"""
if salience.ndim == 1:
if center is None:
center = int(np.argmax(salience))
start = max(0, center - 4)
end = min(len(salience), center + 5)
salience = salience[start:end]
product_sum = np.sum(salience * self.f0_centers_c[start:end])
weight_sum = np.sum(salience)
return product_sum / np.clip(weight_sum, 1e-8, None)
if salience.ndim == 2:
return np.array([self.f0_label2c(salience[i, :]) for i in range(salience.shape[0])])
raise Exception("label should be either 1d or 2d ndarray")
def fill_onset_matrix(self, onsets, window, feature_rate):
"""
Create a sparse onset matrix from window and onsets (per-semitone). Apply a gaussian smoothing (along time)
so that we can tolerate better the alignment problems. This is similar to the frequency smoothing for the f0.
The temporal smoothing is controlled by the parameter self.onset_smooth_std
:param onsets: A 2d np.array of individual note onsets with their respective time values
(Nx2: time in seconds - midi number)
:param window: Timestamps for the frame centers of the sparse matrix
:param feature_rate: Window timestamps are integer, this is to convert them to seconds
:return: onset_roll: A sparse matrix filled with temporally blurred onsets.
"""
onsets = self.get_window_feats(onsets, window, feature_rate)
onset_roll = np.zeros((len(window), len(self.midi_centers)))
for onset in onsets:
onset, note = onset # it was a pair with time and midi note
if self.midi_centers[0] < note < self.midi_centers[-1]: # midi note should be in the range defined
note = int(note) - self.midi_centers[0] # find the note index in our range
onset = (onset*feature_rate)-window[0] # onset index (as float but in frames, not in seconds!)
start = max(0, int(onset) - 3)
end = min(len(window) - 1, int(onset) + 3)
try:
vals = norm.pdf(np.linspace(start - onset, end - onset, end - start + 1) / self.onset_smooth_std)
# if you increase 0.7 you smooth the peak
# if you decrease it, e.g., 0.1, it becomes too peaky! around 0.5-0.7 seems ok
vals /= self.pdf_normalizer
onset_roll[start:end + 1, note] += vals
except ValueError:
print('start',start, 'onset', onset, 'end', end)
return onset_roll, onsets
def fill_note_matrix(self, notes, window, feature_rate):
"""
Create the note matrix (piano roll) from window timestamps and note values per frame.
:param notes: A 2d np.array of individual notes with their active time values Nx2
:param window: Timestamps for the frame centers of the output
:param feature_rate: Window timestamps are integer, this is to convert them to seconds
:return note_roll: The piano roll in the defined range of [note_min, note_max).
"""
notes = self.get_window_feats(notes, window, feature_rate)
# take the notes in the midi range defined
notes = notes[np.logical_and(notes[:,1]>=self.midi_centers[0], notes[:,1]<=self.midi_centers[-1]),:]
times = (notes[:,0]*feature_rate - window[0]).astype(int) # in feature samples (fs:self.hop/self.sr)
notes = (notes[:,1] - self.midi_centers[0]).astype(int)
note_roll = np.zeros((len(window), len(self.midi_centers)))
note_roll[(times, notes)] = 1
return note_roll, notes
def fill_f0_matrix(self, f0s, window, feature_rate):
"""
Unlike the labels for onsets and notes, f0 label is only relevant for strictly monophonic regions! Thus, this
function returns a boolean which represents where to apply the given values.
Never back-propagate without the boolean! Empty frames mean that the label is not that reliable.
:param f0s: A 2d np.array of f0 values with the time they belong to (2xN: time in seconds - f0 in Hz)
:param window: Timestamps for the frame centers of the output
:param feature_rate: Window timestamps are integer, this is to convert them to seconds
:return f0_roll: f0 label matrix and
f0_hz: f0 values in Hz
annotation_bool: A boolean array representing which frames have reliable f0 annotations.
"""
f0s = self.get_window_feats(f0s, window, feature_rate)
f0_cents = np.zeros_like(window, dtype=float)
f0s[:,1] = self.f0_hz2c(f0s[:,1]) # convert f0 in hz to cents
annotation_bool = np.zeros_like(window, dtype=bool)
f0_roll = np.zeros((len(window), len(self.f0_centers_c)))
times_in_frame = f0s[:, 0]*feature_rate - window[0]
for t, f0 in enumerate(f0s):
t = times_in_frame[t]
if t%1 < 0.25: # only consider it as annotation if the f0 values is really close to the frame center
t = int(np.round(t))
f0_roll[t] = self.f0_c2label(f0[1])
annotation_bool[t] = True
f0_cents[t] = f0[1]
return f0_roll, f0_cents, annotation_bool
@staticmethod
def get_window_feats(time_feature_matrix, window, feature_rate):
"""
Restrict the feature matrix to the features that are inside the window
:param window: Timestamps for the frame centers of the output
:param time_feature_matrix: A 2d array of Nx2 per the entire file.
:param feature_rate: Window timestamps are integer, this is to convert them to seconds
:return: window_features: the features inside the given window
"""
start = time_feature_matrix[:,0]>(window[0]-0.5)/feature_rate
end = time_feature_matrix[:,0]<(window[-1]+0.5)/feature_rate
window_features = np.logical_and(start, end)
window_features = np.array(time_feature_matrix[window_features,:])
return window_features
def represent_midi(self, midi, feature_rate):
"""
Represent a midi file as sparse matrices of onsets, offsets, and notes. No f0 is included.
:param midi: A midi file (either a path or a pretty_midi.PrettyMIDI object)
:param feature_rate: The feature rate in Hz
:return: dict {onset, offset, note, time}: Same format with the model's learning and outputs
"""
def _get_onsets_offsets_frames(midi_content):
if isinstance(midi_content, str):
midi_content = PrettyMIDI(midi_content)
onsets = []
offsets = []
frames = []
for instrument in midi_content.instruments:
for note in instrument.notes:
start = int(np.round(note.start * feature_rate))
end = int(np.round(note.end * feature_rate))
note_times = (np.arange(start, end+0.5)/feature_rate)[:, np.newaxis]
note_pitch = np.full_like(note_times, fill_value=note.pitch)
onsets.append([note.start, note.pitch])
offsets.append([note.end, note.pitch])
frames.append(np.hstack([note_times, note_pitch]))
onsets = np.vstack(onsets)
offsets = np.vstack(offsets)
frames = np.vstack(frames)
return onsets, offsets, frames, midi_content
onset_array, offset_array, frame_array, midi_object = _get_onsets_offsets_frames(midi)
window = np.arange(frame_array[0, 0]*feature_rate, frame_array[-1, 0]*feature_rate, dtype=int)
onset_roll, _ = self.fill_onset_matrix(onset_array, window, feature_rate)
offset_roll, _ = self.fill_onset_matrix(offset_array, window, feature_rate)
note_roll, _ = self.fill_note_matrix(frame_array, window, feature_rate)
start_anchor = onset_array[onset_array[:, 0]==np.min(onset_array[:, 0])]
end_anchor = offset_array[offset_array[:, 0]==np.max(offset_array[:, 0])]
return {
'midi': midi_object,
'note': note_roll,
'onset': onset_roll,
'offset': offset_roll,
'time': window/feature_rate,
'start_anchor': start_anchor,
'end_anchor': end_anchor
}
class Synchronizer(Transcriber):
def __init__(self, labeling, instrument='Violin', sr=16000, window_size=1024, hop_length=160):
super().__init__(labeling, instrument=instrument, sr=sr, window_size=window_size, hop_length=hop_length)
def synchronize(self, audio, midi, batch_size=128, include_pitch_bends=True, to_midi=True, debug=False,
include_velocity=False, alignment_padding=50, timing_refinement_range_with_f0s=0):
"""
Synchronize an audio file or mono waveform in numpy or torch with a MIDI file.
:param audio: str, pathlib.Path, np.ndarray, or torch.Tensor
:param midi: str, pathlib.Path, or pretty_midi.PrettyMIDI
:param batch_size: frames to process at once
:param include_pitch_bends: whether to include pitch bends in the MIDI file
:param to_midi: whether to return a MIDI file or a list of note events (as tuple)
:param debug: whether to plot the alignment path and compare the alignment with the predicted notes
:param include_velocity: whether to embed the note confidence in place of the velocity in the MIDI file
:param alignment_padding: how many frames to pad the audio and MIDI representations with
:param timing_refinement_range_with_f0s: how many frames to refine the alignment with the f0 confidence
:return: aligned MIDI file as a pretty_midi.PrettyMIDI object
Args:
debug:
to_midi:
include_pitch_bends:
"""
audio = self.predict(audio, batch_size)
notes_and_midi = self.out2sync(audio, midi, include_velocity=include_velocity,
alignment_padding=alignment_padding)
if notes_and_midi: # it might be none
notes, midi = notes_and_midi
if debug:
import pandas as pd
estimated_notes = self.out2note(audio, postprocessing='spotify', include_pitch_bends=True)
est_df = pd.DataFrame(estimated_notes).sort_values(by=0)
note_df = pd.DataFrame(notes).sort_values(by=0)
fig, ax = plt.subplots(figsize=(20, 10))
for row in notes:
t_start = row[0] # sec
t_end = row[1] # sec
freq = row[2] # Hz
ax.hlines(freq, t_start, t_end, color='k', linewidth=3, zorder=2, alpha=0.5)
for row in estimated_notes:
t_start = row[0] # sec
t_end = row[1] # sec
freq = row[2] # Hz
ax.hlines(freq, t_start, t_end, color='r', linewidth=3, zorder=2, alpha=0.5)
fig.suptitle('alignment (black) vs. estimated (red)')
fig.show()
if not include_pitch_bends:
if to_midi:
return midi['midi']
else:
return notes
else:
notes = [(np.argmin(np.abs(audio['time']-note[0])),
np.argmin(np.abs(audio['time']-note[1])),
note[2], note[3]) for note in notes]
notes = self.get_pitch_bends(audio["f0"], notes, timing_refinement_range_with_f0s)
notes = [
(audio['time'][note[0]], audio['time'][note[1]], note[2], note[3], note[4]) for note in
notes
]
if to_midi:
return self.note2midi(notes, 120) #int(midi['midi'].estimate_tempo()))
else:
return notes
def out2sync_old(self, out: Dict[str, np.array], midi, include_velocity=False, alignment_padding=50, debug=False):
"""
Synchronizes the output of the model with the MIDI file.
Args:
out: Model output dictionary
midi: Path to the MIDI file or PrettyMIDI object
include_velocity: Whether to encode the note confidence in place of velocity
alignment_padding: Number of frames to pad the MIDI features with zeros
debug: Visualize the alignment
Returns:
note events and the aligned PrettyMIDI object
"""
midi = self.labeling.represent_midi(midi, self.sr/self.hop_length)
audio_midi_anchors = self.prepare_for_synchronization(out, midi, feature_rate=self.sr/self.hop_length,
pad_length=alignment_padding)
if isinstance(audio_midi_anchors, str):
print(audio_midi_anchors)
return None # the file is corrupted! no possible alignment at all
else:
audio, midi, anchor_pairs = audio_midi_anchors
ALPHA = 0.6 # This is the coefficient of onsets, 1 - ALPHA for offsets
wp = sync_via_mrmsdtw_with_anchors(f_chroma1=audio['note'].T,
f_onset1=np.hstack([ALPHA * audio['onset'],
(1 - ALPHA) * audio['offset']]).T,
f_chroma2=midi['note'].T,
f_onset2=np.hstack([ALPHA * midi['onset'],
(1 - ALPHA) * midi['offset']]).T,
input_feature_rate=self.sr/self.hop_length,
step_weights=np.array([1.5, 1.5, 2.0]),
threshold_rec=10 ** 6,
verbose=debug, normalize_chroma=False,
anchor_pairs=anchor_pairs)
wp = make_path_strictly_monotonic(wp).astype(int)
audio_time = np.take(audio['time'], wp[0])
midi_time = np.take(midi['time'], wp[1])
notes = []
for instrument in midi['midi'].instruments:
for note in instrument.notes:
note.start = np.interp(note.start, midi_time, audio_time)
note.end = np.interp(note.end, midi_time, audio_time)
if note.end - note.start <= 0.012: # notes should be at least 12 ms (i.e. 2 frames)
note.start = note.start - 0.003
note.end = note.start + 0.012
if include_velocity: # encode the note confidence in place of velocity
velocity = np.median(audio['note'][np.argmin(np.abs(audio['time']-note.start)):
np.argmin(np.abs(audio['time']-note.end)),
note.pitch-self.labeling.midi_centers[0]])
note.velocity = max(1, velocity*127) # velocity should be at least 1 otherwise midi removes the note
else:
velocity = note.velocity/127
notes.append((note.start, note.end, note.pitch, velocity))
return notes, midi
def out2sync(self, out: Dict[str, np.array], midi, include_velocity=False, alignment_padding=50, debug=False):
"""
Synchronizes the output of the model with the MIDI file.
Args:
out: Model output dictionary
midi: Path to the MIDI file or PrettyMIDI object
include_velocity: Whether to encode the note confidence in place of velocity
alignment_padding: Number of frames to pad the MIDI features with zeros
debug: Visualize the alignment
Returns:
note events and the aligned PrettyMIDI object
"""
midi = self.labeling.represent_midi(midi, self.sr/self.hop_length)
audio_midi_anchors = self.prepare_for_synchronization(out, midi, feature_rate=self.sr/self.hop_length,
pad_length=alignment_padding)
if isinstance(audio_midi_anchors, str):
print(audio_midi_anchors)
return None # the file is corrupted! no possible alignment at all
else:
audio, midi, anchor_pairs = audio_midi_anchors
ALPHA = 0.6 # This is the coefficient of onsets, 1 - ALPHA for offsets
starts = (np.array(anchor_pairs[0])*self.sr/self.hop_length).astype(int)
ends = (np.array(anchor_pairs[1])*self.sr/self.hop_length).astype(int)
wp = sync_via_mrmsdtw_with_anchors(f_chroma1=audio['note'].T[:, starts[0]:ends[0]],
f_onset1=np.hstack([ALPHA * audio['onset'],
(1 - ALPHA) * audio['offset']]).T[:, starts[0]:ends[0]],
f_chroma2=midi['note'].T[:, starts[1]:ends[1]],
f_onset2=np.hstack([ALPHA * midi['onset'],
(1 - ALPHA) * midi['offset']]).T[:, starts[1]:ends[1]],
input_feature_rate=self.sr/self.hop_length,
step_weights=np.array([1.5, 1.5, 2.0]),
threshold_rec=10 ** 6,
verbose=debug, normalize_chroma=False,
anchor_pairs=None)
wp = make_path_strictly_monotonic(wp).astype(int)
wp[0] += starts[0]
wp[1] += starts[1]
wp = np.hstack((wp, ends[:,np.newaxis]))
audio_time = np.take(audio['time'], wp[0])
midi_time = np.take(midi['time'], wp[1])
notes = []
for instrument in midi['midi'].instruments:
for note in instrument.notes:
note.start = np.interp(note.start, midi_time, audio_time)
note.end = np.interp(note.end, midi_time, audio_time)
if note.end - note.start <= 0.012: # notes should be at least 12 ms (i.e. 2 frames)
note.start = note.start - 0.003
note.end = note.start + 0.012
if include_velocity: # encode the note confidence in place of velocity
velocity = np.median(audio['note'][np.argmin(np.abs(audio['time']-note.start)):
np.argmin(np.abs(audio['time']-note.end)),
note.pitch-self.labeling.midi_centers[0]])
note.velocity = max(1, velocity*127) # velocity should be at least 1 otherwise midi removes the note
else:
velocity = note.velocity/127
notes.append((note.start, note.end, note.pitch, velocity))
return notes, midi
@staticmethod
def pad_representations(dict_of_representations, pad_length=10):
"""
Pad the representations so that the DTW does not enforce them to encompass the entire duration.
Args:
dict_of_representations: audio or midi representations
pad_length: how many frames to pad
Returns:
padded representations
"""
for key, value in dict_of_representations.items():
if key == 'time':
padded_time = dict_of_representations[key]
padded_time = np.concatenate([padded_time[:2*pad_length], padded_time+padded_time[2*pad_length]])
dict_of_representations[key] = padded_time - padded_time[pad_length] # this is to ensure that the
# first frame times are negative until the real zero time
elif key in ['onset', 'offset', 'note']:
dict_of_representations[key] = np.pad(value, ((pad_length, pad_length), (0, 0)))
elif key in ['start_anchor', 'end_anchor']:
anchor_time = dict_of_representations[key][0][0]
anchor_time = np.argmin(np.abs(dict_of_representations['time'] - anchor_time))
dict_of_representations[key][:,0] = anchor_time
dict_of_representations[key] = dict_of_representations[key].astype(np.int)
return dict_of_representations
def prepare_for_synchronization(self, audio, midi, feature_rate=44100/256, pad_length=100):
"""
MrMsDTW works better with start and end anchors. This function finds the start and end anchors for audio
based on the midi notes. It also pads the MIDI representations since MIDI files most often start with an active
note and end with an active note. Thus, the DTW will try to align the active notes to the entire duration of the
audio. This is not desirable. Therefore, we pad the MIDI representations with a few frames of silence at the
beginning and end of the audio. This way, the DTW will not try to align the active notes to the entire duration.
Args:
audio:
midi:
feature_rate:
pad_length:
Returns:
"""
# first pad the MIDI
midi = self.pad_representations(midi, pad_length)
# sometimes f0s are more reliable than the notes. So, we use both the f0s and the notes together to find the
# start and end anchors. f0 lookup bins is the number of bins to look around the f0 to assign a note to it.
f0_lookup_bins = int(100//(2*self.labeling.f0_granularity_c))
# find the start anchor for the audio
# first decide on which notes to use for the start anchor (take the entire chord where the MIDI file starts)
anchor_notes = midi['start_anchor'][:, 1] - self.labeling.midi_centers[0]
# now find which f0 bins to look at for the start anchor
anchor_f0s = [self.midi_pitch_to_contour_bin(an+self.labeling.midi_centers[0]) for an in anchor_notes]
anchor_f0s = np.array([list(range(f0-f0_lookup_bins, f0+f0_lookup_bins+1)) for f0 in anchor_f0s]).reshape(-1)
# first start anchor proposals come from the notes
anchor_vals = np.any(audio['note'][:, anchor_notes]>0.5, axis=1)
# now the f0s
anchor_vals_f0 = np.any(audio['f0'][:, anchor_f0s]>0.5, axis=1)
# combine the two
anchor_vals = np.logical_or(anchor_vals, anchor_vals_f0)
if not any(anchor_vals):
return 'corrupted' # do not consider the file if we cannot find the start anchor
audio_start = np.argmax(anchor_vals)
# now the end anchor (most string instruments use chords in cadences: in general the end anchor is polyphonic)
anchor_notes = midi['end_anchor'][:, 1] - self.labeling.midi_centers[0]
anchor_f0s = [self.midi_pitch_to_contour_bin(an+self.labeling.midi_centers[0]) for an in anchor_notes]
anchor_f0s = np.array([list(range(f0-f0_lookup_bins, f0+f0_lookup_bins+1)) for f0 in anchor_f0s]).reshape(-1)
# the same procedure as above
anchor_vals = np.any(audio['note'][::-1, anchor_notes]>0.5, axis=1)
anchor_vals_f0 = np.any(audio['f0'][::-1, anchor_f0s]>0.5, axis=1)
anchor_vals = np.logical_or(anchor_vals, anchor_vals_f0)
if not any(anchor_vals):
return 'corrupted' # do not consider the file if we cannot find the end anchor
audio_end = audio['note'].shape[0] - np.argmax(anchor_vals)
if audio_end - audio_start < (midi['end_anchor'][0][0] - midi['start_anchor'][0][0])/10: # no one plays x10 faster
return 'corrupted' # do not consider the interval between anchors is too short
anchor_pairs = [(audio_start - 5, midi['start_anchor'][0][0] - 5),
(audio_end + 5, midi['end_anchor'][0][0] + 5)]
if anchor_pairs[0][0] < 1:
anchor_pairs[0] = (1, midi['start_anchor'][0][0])
if anchor_pairs[1][0] > audio['note'].shape[0] - 1:
anchor_pairs[1] = (audio['note'].shape[0] - 1, midi['end_anchor'][0][0])
return audio, midi, [(anchor_pairs[0][0]/feature_rate, anchor_pairs[0][1]/feature_rate),
(anchor_pairs[1][0]/feature_rate, anchor_pairs[1][1]/feature_rate)]
class ConvBlock(nn.Module):
def __init__(self, f, w, s, d, in_channels):
super().__init__()
p1 = d*(w - 1) // 2
p2 = d*(w - 1) - p1
self.pad = nn.ZeroPad2d((0, 0, p1, p2))
self.conv2d = nn.Conv2d(in_channels=in_channels, out_channels=f, kernel_size=(w, 1), stride=(s, 1), dilation=(d, 1))
self.relu = nn.ReLU()
self.bn = nn.BatchNorm2d(f)
self.pool = nn.MaxPool2d(kernel_size=(2, 1))
self.dropout = nn.Dropout(0.25)
def forward(self, x):
x = self.pad(x)
x = self.conv2d(x)
x = self.relu(x)
x = self.bn(x)
x = self.pool(x)
x = self.dropout(x)
return x
class NoPadConvBlock(nn.Module):
def __init__(self, f, w, s, d, in_channels):
super().__init__()
self.conv2d = nn.Conv2d(in_channels=in_channels, out_channels=f, kernel_size=(w, 1), stride=(s, 1),
dilation=(d, 1))
self.relu = nn.ReLU()
self.bn = nn.BatchNorm2d(f)
self.pool = nn.MaxPool2d(kernel_size=(2, 1))
self.dropout = nn.Dropout(0.25)
def forward(self, x):
x = self.conv2d(x)
x = self.relu(x)
x = self.bn(x)
x = self.pool(x)
x = self.dropout(x)
return x
class TinyPathway(nn.Module):
def __init__(self, dilation=1, hop=256, localize=False,
model_capacity="full", n_layers=6, chunk_size=256):
super().__init__()
capacity_multiplier = {
'tiny': 4, 'small': 8, 'medium': 16, 'large': 24, 'full': 32
}[model_capacity]
self.layers = [1, 2, 3, 4, 5, 6]
self.layers = self.layers[:n_layers]
filters = [n * capacity_multiplier for n in [32, 8, 8, 8, 8, 8]]
filters = [1] + filters
widths = [512, 64, 64, 64, 32, 32]
strides = self.deter_dilations(hop//(4*(2**n_layers)), localize=localize)
strides[0] = strides[0]*4 # apply 4 times more stride at the first layer
dilations = self.deter_dilations(dilation)
for i in range(len(self.layers)):
f, w, s, d, in_channel = filters[i + 1], widths[i], strides[i], dilations[i], filters[i]
self.add_module("conv%d" % i, NoPadConvBlock(f, w, s, d, in_channel))
self.chunk_size = chunk_size
self.input_window, self.hop = self.find_input_size_for_pathway()
self.out_dim = filters[n_layers]
def find_input_size_for_pathway(self):
def find_input_size(output_size, kernel_size, stride, dilation, padding):
num = (stride*(output_size-1)) + 1
input_size = num - 2*padding + dilation*(kernel_size-1)
return input_size
conv_calc, n = {}, 0
for i in self.layers:
layer = self.__getattr__("conv%d" % (i-1))
for mm in layer.modules():
if hasattr(mm, 'kernel_size'):
try:
d = mm.dilation[0]
except TypeError:
d = mm.dilation
conv_calc[n] = [mm.kernel_size[0], mm.stride[0], 0, d]
n += 1
out = self.chunk_size
hop = 1
for n in sorted(conv_calc.keys())[::-1]:
kernel_size_n, stride_n, padding_n, dilation_n = conv_calc[n]
out = find_input_size(out, kernel_size_n, stride_n, dilation_n, padding_n)
hop = hop*stride_n
return out, hop
def deter_dilations(self, total_dilation, localize=False):
n_layers = len(self.layers)
if localize: # e.g., 32*1023 window and 3 layers -> [1, 1, 32]
a = [total_dilation] + [1 for _ in range(n_layers-1)]
else: # e.g., 32*1023 window and 3 layers -> [4, 4, 2]
total_dilation = int(np.log2(total_dilation))
a = []
for layer in range(n_layers):
this_dilation = int(np.ceil(total_dilation/(n_layers-layer)))
a.append(2**this_dilation)
total_dilation = total_dilation - this_dilation
return a[::-1]
def forward(self, x):
x = x.view(x.shape[0], 1, -1, 1)
for i in range(len(self.layers)):
x = self.__getattr__("conv%d" % i)(x)
x = x.permute(0, 3, 2, 1)
return x
#@jit(nopython=True)
def cosine_distance(f1, f2, cos_meas_max=2.0, cos_meas_min=1.0):
"""For all pairs of vectors f1' and f2' in f1 and f2, computes 1 - (f1.f2),
where '.' is the dot product, and rescales the results to lie in the
range [cos_meas_min, cos_meas_max].
Corresponds to regular cosine distance if f1' and f2' are normalized and
cos_meas_min==0.0 and cos_meas_max==1.0."""
return (1 - f1.T @ f2) * (cos_meas_max - cos_meas_min) + cos_meas_min
#@jit(nopython=True)
def euclidean_distance(f1, f2, l2_meas_max=1.0, l2_meas_min=0.0):
"""Computes euclidean distances between the vectors in f1 and f2, and
rescales the results to lie in the range [cos_meas_min, cos_meas_max]."""
#S1 = np.zeros((f1.shape[1], f2.shape[1]))
#for n in range(f2.shape[1]):
# S1[:, n] = np.sqrt(np.sum((f1.T - f2[:, n]) ** 2, axis=1))
S1 = euclidean_distances(f1.T, f2.T)
return S1 * (l2_meas_max - l2_meas_min) + l2_meas_min
def compute_high_res_cost_matrix(f_chroma1: np.ndarray,
f_chroma2: np.ndarray,
f_onset1: np.ndarray,
f_onset2: np.ndarray,
weights: np.ndarray = np.array([1.0, 1.0]),
cos_meas_min: float = 1.0,
cos_meas_max: float = 2.0,
l2_meas_min: float = 0.0,
l2_meas_max: float = 1.0):
"""Computes cost matrix of two sequences using two feature matrices
for each sequence. Cosine distance is used for the chroma sequences and
euclidean distance is used for the DLNCO sequences.
Parameters
----------
f_chroma1 : np.ndarray [shape=(12, N)]
Chroma feature matrix of the first sequence (assumed to be normalized).
f_chroma2 : np.ndarray [shape=(12, M)]
Chroma feature matrix of the second sequence (assumed to be normalized).
f_onset1 : np.ndarray [shape=(12, N)]
DLNCO feature matrix of the first sequence
f_onset2 : np.ndarray [shape=(12, M)]
DLNCO feature matrix of the second sequence
weights : np.ndarray [shape=[2,]]
Weights array for the high-resolution cost computation.
weights[0] * cosine_distance + weights[1] * euclidean_distance
cos_meas_min : float
Cosine distances are shifted to be at least ``cos_meas_min``
cos_meas_max : float
Cosine distances are scaled to be at most ``cos_meas_max``
l2_meas_min : float
Euclidean distances are shifted to be at least ``l2_meas_min``
l2_meas_max : float
Euclidean distances are scaled to be at most ``l2_meas_max``
Returns
-------
C: np.ndarray [shape=(N, M)]
Cost matrix
"""
cos_dis = cosine_distance(f_chroma1, f_chroma2, cos_meas_min=cos_meas_min, cos_meas_max=cos_meas_max)
euc_dis = euclidean_distance(f_onset1, f_onset2, l2_meas_min=l2_meas_min, l2_meas_max=l2_meas_max)
return weights[0] * cos_dis + weights[1] * euc_dis
@jit(nopython=True, cache=True)
def __C_to_DE(C: np.ndarray = None,
dn: np.ndarray = np.array([1, 1, 0], np.int64),
dm: np.ndarray = np.array([1, 0, 1], np.int64),
dw: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64),
sub_sequence: bool = False) -> tuple[np.ndarray, np.ndarray]:
"""This function computes the accumulated cost matrix D and the step index
matrix E.
Parameters
----------
C : np.ndarray (np.float32 / np.float64) [shape=(N, M)]
Cost matrix
dn : np.ndarray (np.int64) [shape=(1, S)]
Integer array defining valid steps (N direction of C), default: [1, 1, 0]
dm : np.ndarray (np.int64) [shape=(1, S)]
Integer array defining valid steps (M direction of C), default: [1, 0, 1]
dw : np.ndarray (np.float64) [shape=(1, S)]
Double array defining the weight of the each step, default: [1.0, 1.0, 1.0]
sub_sequence : bool
Set `True` for SubSequence DTW, default: False
Returns
-------
D : np.ndarray (np.float64) [shape=(N, M)]
Accumulated cost matrix of type double
E : np.ndarray (np.int64) [shape=(N, M)]
Step index matrix.
E[n, m] holds the index of the step take to determine the value of D[n, m].
If E[n, m] is zero, no valid step was possible.
NaNs in the cost matrix are preserved, invalid fields in the cost matrix are NaNs.
"""
if C is None:
raise ValueError('C must be a 2D numpy array.')
N, M = C.shape
S = dn.size
if S != dm.size or S != dw.size:
raise ValueError('The parameters dn,dm, and dw must be of equal length.')
# calc bounding box size of steps
sbbn = np.max(dn)
sbbm = np.max(dm)
# initialize E
E = np.zeros((N, M), np.int64) - 1
# initialize extended D matrix
D = np.ones((sbbn + N, sbbm + M), np.float64) * np.inf
if sub_sequence:
for m in range(M):
D[sbbn, sbbm + m] = C[0, m]
else:
D[sbbn, sbbm] = C[0, 0]
# accumulate
for m in range(sbbm, M + sbbm):
for n in range(sbbn, N + sbbn):
for s in range(S):
cost = D[n - dn[s], m - dm[s]] + C[n - sbbn, m - sbbm] * dw[s]
if cost < D[n, m]:
D[n, m] = cost
E[n - sbbn, m - sbbm] = s
D = D[sbbn: N + sbbn, sbbm: M + sbbm]
return D, E
@jit(nopython=True, cache=True)
def __E_to_warping_path(E: np.ndarray,
dn: np.ndarray = np.array([1, 1, 0], np.int64),
dm: np.ndarray = np.array([1, 0, 1], np.int64),
sub_sequence: bool = False,
end_index: int = -1) -> np.ndarray:
"""This function computes a warping path based on the provided matrix E
and the allowed steps.
Parameters
----------
E : np.ndarray (np.int64) [shape=(N, M)]
Step index matrix
dn : np.ndarray (np.int64) [shape=(1, S)]
Integer array defining valid steps (N direction of C), default: [1, 1, 0]
dm : np.ndarray (np.int64) [shape=(1, S)]
Integer array defining valid steps (M direction of C), default: [1, 0, 1]
sub_sequence : bool
Set `True` for SubSequence DTW, default: False
end_index : int
In case of SubSequence DTW
Returns
-------
warping_path : np.ndarray (np.int64) [shape=(2, M)]
Resulting optimal warping path
"""
N, M = E.shape
if not sub_sequence and end_index == -1:
end_index = M - 1
m = end_index
n = N - 1
warping_path = np.zeros((2, n + m + 1))
index = 0
def _loop(m, n, index):
warping_path[:, index] = np.array([n, m])
step_index = E[n, m]
m -= dm[step_index]
n -= dn[step_index]
index += 1
return m, n, index
if sub_sequence:
while n > 0:
m, n, index = _loop(m, n, index)
else:
while m > 0 or n > 0:
m, n, index = _loop(m, n, index)
warping_path[:, index] = np.array([n, m])
warping_path = warping_path[:, index::-1]
return warping_path
def compute_warping_path(C: np.ndarray,
step_sizes: np.ndarray = np.array([[1, 0], [0, 1], [1, 1]], np.int64),
step_weights: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64),
implementation: str = 'synctoolbox'):
"""Applies DTW on cost matrix C.
Parameters
----------
C : np.ndarray (np.float32 / np.float64) [shape=(N, M)]
Cost matrix
step_sizes : np.ndarray (np.int64) [shape=(2, S)]
Array of step sizes
step_weights : np.ndarray (np.float64) [shape=(2, S)]
Array of step weights
implementation: str
Choose among ``synctoolbox`` and ``librosa``. (default: ``synctoolbox``)
Returns
-------
D : np.ndarray (np.float64) [shape=(N, M)]
Accumulated cost matrix
E : np.ndarray (np.int64) [shape=(N, M)]
Step index matrix
wp : np.ndarray (np.int64) [shape=(2, M)]
Warping path
"""
if implementation == 'librosa':
D, wp, E = dtw(C=C,
step_sizes_sigma=step_sizes,
weights_add=np.array([0, 0, 0]),
weights_mul=step_weights,
return_steps=True,
subseq=False)
wp = wp[::-1].T
elif implementation == 'synctoolbox':
dn = step_sizes[:, 0]
dm = step_sizes[:, 1]
D, E = __C_to_DE(C,
dn=dn,
dm=dm,
dw=step_weights,
sub_sequence=False)
wp = __E_to_warping_path(E=E,
dn=dn,
dm=dm,
sub_sequence=False)
else:
raise NotImplementedError(f'No implementation found called {implementation}')
return D, E, wp
def compute_warping_paths_from_cost_matrices(cost_matrices: List,
step_sizes: np.array = np.array([[1, 0], [0, 1], [1, 1]], int),
step_weights: np.array = np.array([1.0, 1.0, 1.0], np.float64),
implementation: str = 'synctoolbox') -> List:
"""Computes a path via DTW on each matrix in cost_matrices
Parameters
----------
cost_matrices : list
List of cost matrices
step_sizes : np.ndarray
DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]]))
step_weights : np.ndarray
DTW step weights (default: np.array([1.0, 1.0, 1.0]))
implementation : str
Choose among 'synctoolbox' and 'librosa' (default: 'synctoolbox')
Returns
-------
wp_list : list
List of warping paths
"""
return [compute_warping_path(C=C,
step_sizes=step_sizes,
step_weights=step_weights,
implementation=implementation)[2] for C in cost_matrices]
def compute_cost_matrices_between_anchors(f_chroma1: np.ndarray,
f_chroma2: np.ndarray,
anchors: np.ndarray,
f_onset1: np.ndarray = None,
f_onset2: np.ndarray = None,
alpha: float = 0.5) -> List:
"""Computes cost matrices for the given features between subsequent
pairs of anchors points.
Parameters
----------
f_chroma1 : np.ndarray [shape=(12, N)]
Chroma feature matrix of the first sequence
f_chroma2 : np.ndarray [shape=(12, M)]
Chroma feature matrix of the second sequence
anchors : np.ndarray [shape=(2, R)]
Anchor sequence
f_onset1 : np.ndarray [shape=(L, N)]
Onset feature matrix of the first sequence
f_onset2 : np.ndarray [shape=(L, M)]
Onset feature matrix of the second sequence
alpha: float
Alpha parameter to weight the cost functions.
Returns
-------
cost_matrices: list
List containing cost matrices
"""
high_res = False
if f_onset1 is not None and f_onset2 is not None:
high_res = True
cost_matrices = list()
for k in range(anchors.shape[1] - 1):
a1 = np.array(anchors[:, k].astype(int), copy=True)
a2 = np.array(anchors[:, k + 1].astype(int), copy=True)
if high_res:
cost_matrices.append(compute_high_res_cost_matrix(f_chroma1[:, a1[0]: a2[0] + 1],
f_chroma2[:, a1[1]: a2[1] + 1],
f_onset1[:, a1[0]: a2[0] + 1],
f_onset2[:, a1[1]: a2[1] + 1],
weights=np.array([alpha, 1-alpha])))
else:
cost_matrices.append(cosine_distance(f_chroma1[:, a1[0]: a2[0] + 1],
f_chroma2[:, a1[1]: a2[1] + 1]))
return cost_matrices
def build_path_from_warping_paths(warping_paths: List,
anchors: np.ndarray = None) -> np.ndarray:
"""The function builds a path from a given list of warping paths
and the anchors used to obtain these paths. The indices of the original
warping paths are adapted such that they cross the anchors.
Parameters
----------
warping_paths : list
List of warping paths
anchors : np.ndarray [shape=(2, N)]
Anchor sequence
Returns
-------
path : np.ndarray [shape=(2, M)]
Merged path
"""
if anchors is None:
# When no anchor points are given, we can construct them from the
# subpaths in the wp_list
# To do this, we assume that the first path's element is the starting
# anchor
anchors = warping_paths[0][:, 0]
# Retrieve the last element of each path
anchors_tmp = np.zeros(len(warping_paths), np.float32)
for idx, x in enumerate(warping_paths):
anchors_tmp[idx] = x[:, -1]
# Correct indices, such that the indices of the anchors are given on a
# common path. Each anchor a_l = [Nnew_[l+1];Mnew_[l+1]]
# Nnew_[l+1] = N_l + N_[l+1] -1
# Mnew_[l+1] = M_l + M_[l+1] -1
anchors_tmp = np.cumsum(anchors_tmp, axis=1)
anchors_tmp[:, 1:] = anchors_tmp[:, 1:] - [np.arange(1, anchors_tmp.shape[1]),
np.arange(1, anchors_tmp.shape[1])]
anchors = np.concatenate([anchors, anchors_tmp], axis=1)
L = len(warping_paths) + 1
path = None
wp = None
for anchor_idx in range(1, L):
anchor1 = anchors[:, anchor_idx - 1]
anchor2 = anchors[:, anchor_idx]
wp = np.array(warping_paths[anchor_idx - 1], copy=True)
# correct indices in warpingPath
wp += np.repeat(anchor1.reshape(-1, 1), wp.shape[1], axis=1).astype(wp.dtype)
# consistency checks
assert np.array_equal(wp[:, 0], anchor1), 'First entry of warping path does not coincide with anchor point'
assert np.array_equal(wp[:, -1], anchor2), 'Last entry of warping path does not coincide with anchor point'
if path is None:
path = np.array(wp[:, :-1], copy=True)
else:
path = np.concatenate([path, wp[:, :-1]], axis=1)
# append last index of warping path
path = np.concatenate([path, wp[:, -1].reshape(-1, 1)], axis=1)
return path
def find_anchor_indices_in_warping_path(warping_path: np.ndarray,
anchors: np.ndarray) -> np.ndarray:
"""Compute the indices in the warping path that corresponds
to the elements in 'anchors'
Parameters
----------
warping_path : np.ndarray [shape=(2, N)]
Warping path
anchors : np.ndarray [shape=(2, M)]
Anchor sequence
Returns
-------
indices : np.ndarray [shape=(2, M)]
Anchor indices in the ``warping_path``
"""
indices = np.zeros(anchors.shape[1])
for k in range(anchors.shape[1]):
a = anchors[:, k]
indices[k] = np.where((a[0] == warping_path[0, :]) & (a[1] == warping_path[1, :]))[0]
return indices
def make_path_strictly_monotonic(P: np.ndarray) -> np.ndarray:
"""Compute strict alignment path from a warping path
Wrapper around "compute_strict_alignment_path_mask" from libfmp.
Parameters
----------
P: np.ndarray [shape=(2, N)]
Warping path
Returns
-------
P_mod: np.ndarray [shape=(2, M)]
Strict alignment path, M <= N
"""
P_mod = compute_strict_alignment_path_mask(P.T)
return P_mod.T
def compute_strict_alignment_path_mask(P):
"""Compute strict alignment path from a warping path
Notebook: C3/C3S3_MusicAppTempoCurve.ipynb
Args:
P (list or np.ndarray): Wapring path
Returns:
P_mod (list or np.ndarray): Strict alignment path
"""
P = np.array(P, copy=True)
N, M = P[-1]
# Get indices for strict monotonicity
keep_mask = (P[1:, 0] > P[:-1, 0]) & (P[1:, 1] > P[:-1, 1])
# Add first index to enforce start boundary condition
keep_mask = np.concatenate(([True], keep_mask))
# Remove all indices for of last row or column
keep_mask[(P[:, 0] == N) | (P[:, 1] == M)] = False
# Add last index to enforce end boundary condition
keep_mask[-1] = True
P_mod = P[keep_mask, :]
return P_mod
def evaluate_synchronized_positions(ground_truth_positions: np.ndarray,
synchronized_positions: np.ndarray,
tolerances: List = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 250]):
"""Compute standard evaluation measures for evaluating the quality of synchronized (musical) positions.
When synchronizing two versions of a piece of music, one can evaluate the quality of the resulting alignment
by comparing errors at musical positions (e.g. beats or measures) that appear in both versions.
This function implements two measures: mean absolute error at positions and the percentage of correctly transferred
measures given a threshold.
Parameters
----------
ground_truth_positions: np.ndarray [shape=N]
Positions (e.g. beat or measure positions) annotated in the target version of a piece of music, in milliseconds.
synchronized_positions: np.ndarray [shape=N]
The same musical positions as in 'ground_truth_positions' obtained by transfer using music synchronization,
in milliseconds.
tolerances: list of integers
Tolerances (in miliseconds) used for comparing annotated and synchronized positions.
Returns
-------
mean_absolute_error: float
Mean absolute error for synchronized positions, in miliseconds.
accuracy_at_tolerances: list of floats
Percentages of correctly transferred measures, for each entry in 'tolerances'.
"""
absolute_errors_at_positions = np.abs(synchronized_positions - ground_truth_positions)
print('Measure transfer from recording 1 to 2 yielded:')
mean_absolute_error = np.mean(absolute_errors_at_positions)
print('\nMean absolute error (MAE): %.2fms (standard deviation: %.2fms)' % (mean_absolute_error,
np.std(absolute_errors_at_positions)))
print('\nAccuracy of transferred positions at different tolerances:')
print('\t\t\tAccuracy')
print('################################')
accuracy_at_tolerances = []
for tolerance in tolerances:
accuracy = np.mean((absolute_errors_at_positions < tolerance)) * 100.0
accuracy_at_tolerances.append(accuracy)
print('Tolerance: {} ms \t{:.2f} %'.format(tolerance, accuracy))
return mean_absolute_error, accuracy_at_tolerances
def smooth_downsample_feature(f_feature: np.ndarray,
input_feature_rate: float,
win_len_smooth: int = 0,
downsamp_smooth: int = 1) -> Tuple[np.ndarray, float]:
"""Temporal smoothing and downsampling of a feature sequence
Parameters
----------
f_feature : np.ndarray
Input feature sequence, size dxN
input_feature_rate : float
Input feature rate in Hz
win_len_smooth : int
Smoothing window length. For 0, no smoothing is applied.
downsamp_smooth : int
Downsampling factor. For 1, no downsampling is applied.
Returns
-------
f_feature_stat : np.ndarray
Downsampled & smoothed feature.
new_feature_rate : float
New feature rate after downsampling
"""
if win_len_smooth != 0 or downsamp_smooth != 1:
# hack to get the same results as on MATLAB
stat_window = np.hanning(win_len_smooth+2)[1:-1]
stat_window /= np.sum(stat_window)
# upfirdn filters and downsamples each column of f_stat_help
f_feature_stat = upfirdn(h=stat_window, x=f_feature, up=1, down=downsamp_smooth)
seg_num = f_feature.shape[1]
stat_num = int(np.ceil(seg_num / downsamp_smooth))
cut = int(np.floor((win_len_smooth - 1) / (2 * downsamp_smooth)))
f_feature_stat = f_feature_stat[:, cut: stat_num + cut]
else:
f_feature_stat = f_feature
new_feature_rate = input_feature_rate / downsamp_smooth
return f_feature_stat, new_feature_rate
@jit(nopython=True)
def normalize_feature(feature: np.ndarray,
norm_ord: int,
threshold: float) -> np.ndarray:
"""Normalizes a feature sequence according to the l^norm_ord norm.
Parameters
----------
feature : np.ndarray
Input feature sequence of size d x N
d: dimensionality of feature vectors
N: number of feature vectors (time in frames)
norm_ord : int
Norm degree
threshold : float
If the norm falls below threshold for a feature vector, then the
normalized feature vector is set to be the normalized unit vector.
Returns
-------
f_normalized : np.ndarray
Normalized feature sequence
"""
# TODO rewrite in vectorized fashion
d, N = feature.shape
f_normalized = np.zeros((d, N))
# normalize the vectors according to the l^norm_ord norm
unit_vec = np.ones(d)
unit_vec = unit_vec / np.linalg.norm(unit_vec, norm_ord)
for k in range(N):
cur_norm = np.linalg.norm(feature[:, k], norm_ord)
if cur_norm < threshold:
f_normalized[:, k] = unit_vec
else:
f_normalized[:, k] = feature[:, k] / cur_norm
return f_normalized
class FourHeads(Synchronizer):
def __init__(
self,
pathway_multiscale: int = 32,
num_pathway_layers: int = 2,
chunk_size: int = 256,
hop_length: int = 256,
encoder_dim: int = 256,
sr: int = 44100,
num_heads: int = 4,
ffn_dim: int = 128,
num_separator_layers: int = 16,
num_representation_layers: int = 4,
depthwise_conv_kernel_size: int = 31,
dropout: float = 0.25,
use_group_norm: bool = False,
convolution_first: bool = False,
labeling=PerformanceLabel(),
wiring='tiktok'
):
super().__init__(labeling, sr=sr, hop_length=hop_length)
self.main = TinyPathway(dilation=1, hop=hop_length, localize=True,
n_layers=num_pathway_layers, chunk_size=chunk_size)
self.attendant = TinyPathway(dilation=pathway_multiscale, hop=hop_length, localize=False,
n_layers=num_pathway_layers, chunk_size=chunk_size)
assert self.main.hop == self.attendant.hop # they should output with the same sample rate
print('hop in samples:', self.main.hop)
self.input_window = self.attendant.input_window
self.encoder_dim = encoder_dim
self.dropout = nn.Dropout(dropout)
# merge two streams into a conformer input
self.stream_merger = nn.Sequential(self.dropout,
nn.Linear(self.main.out_dim + self.attendant.out_dim, self.encoder_dim))
print('main stream window:', self.main.input_window,
', attendant stream window:', self.attendant.input_window,
', conformer input dim:', self.encoder_dim)
center = ((chunk_size - 1) * self.main.hop) # region labeled with pitch track
main_overlap = self.main.input_window - center
main_overlap = [int(np.floor(main_overlap / 2)), int(np.ceil(main_overlap / 2))]
attendant_overlap = self.attendant.input_window - center
attendant_overlap = [int(np.floor(attendant_overlap / 2)), int(np.ceil(attendant_overlap / 2))]
print('main frame overlap:', main_overlap, ', attendant frame overlap:', attendant_overlap)
main_crop_relative = [attendant_overlap[0] - main_overlap[0], main_overlap[1] - attendant_overlap[1]]
print('crop for main pathway', main_crop_relative)
print("Total sequence duration is", self.attendant.input_window, 'samples')
print('Main stream receptive field for one frame is', (self.main.input_window - center), 'samples')
print('Attendant stream receptive field for one frame is', (self.attendant.input_window - center), 'samples')
self.frame_overlap = attendant_overlap
self.main_stream_crop = main_crop_relative
self.max_window_size = self.attendant.input_window
self.chunk_size = chunk_size
self.separator_stream = nn.ModuleList( # source-separation, reinvented
[
ConformerLayer(
input_dim=self.encoder_dim,
ffn_dim=ffn_dim,
num_attention_heads=num_heads,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
use_group_norm=use_group_norm,
convolution_first=convolution_first,
)
for _ in range(num_separator_layers)
]
)
self.f0_stream = nn.ModuleList(
[
ConformerLayer(
input_dim=self.encoder_dim,
ffn_dim=ffn_dim,
num_attention_heads=num_heads,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
use_group_norm=use_group_norm,
convolution_first=convolution_first,
)
for _ in range(num_representation_layers)
]
)
self.f0_head = nn.Linear(self.encoder_dim, len(self.labeling.f0_centers_c))
self.note_stream = nn.ModuleList(
[
ConformerLayer(
input_dim=self.encoder_dim,
ffn_dim=ffn_dim,
num_attention_heads=num_heads,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
use_group_norm=use_group_norm,
convolution_first=convolution_first,
)
for _ in range(num_representation_layers)
]
)
self.note_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))
self.onset_stream = nn.ModuleList(
[
ConformerLayer(
input_dim=self.encoder_dim,
ffn_dim=ffn_dim,
num_attention_heads=num_heads,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
use_group_norm=use_group_norm,
convolution_first=convolution_first,
)
for _ in range(num_representation_layers)
]
)
self.onset_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))
self.offset_stream = nn.ModuleList(
[
ConformerLayer(
input_dim=self.encoder_dim,
ffn_dim=ffn_dim,
num_attention_heads=num_heads,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
use_group_norm=use_group_norm,
convolution_first=convolution_first,
)
for _ in range(num_representation_layers)
]
)
self.offset_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))
self.labeling = labeling
self.double_merger = nn.Sequential(self.dropout, nn.Linear(2 * self.encoder_dim, self.encoder_dim))
self.triple_merger = nn.Sequential(self.dropout, nn.Linear(3 * self.encoder_dim, self.encoder_dim))
self.wiring = wiring
print('Total parameter count: ', self.count_parameters())
def count_parameters(self) -> int:
""" Count parameters of encoder """
return sum([p.numel() for p in self.parameters()])
def stream(self, x, representation, key_padding_mask=None):
for i, layer in enumerate(self.__getattr__('{}_stream'.format(representation))):
x = layer(x, key_padding_mask)
return x
def head(self, x, representation):
return self.__getattr__('{}_head'.format(representation))(x)
def forward(self, x, key_padding_mask=None):
# two auditory streams followed by the separator stream to ensure timbre-awareness
x_attendant = self.attendant(x)
x_main = self.main(x[:, self.main_stream_crop[0]:self.main_stream_crop[1]])
x = self.stream_merger(torch_cat((x_attendant, x_main), -1).squeeze(1))
x = self.stream(x, 'separator', key_padding_mask)
f0 = self.stream(x, 'f0', key_padding_mask) # they say this is a low level feature :)
if self.wiring == 'parallel':
note = self.stream(x, 'note', key_padding_mask)
onset = self.stream(x, 'onset', key_padding_mask)
offset = self.stream(x, 'offset', key_padding_mask)
elif self.wiring == 'tiktok':
onset = self.stream(x, 'onset', key_padding_mask)
offset = self.stream(x, 'offset', key_padding_mask)
# f0 is disconnected, note relies on separator, onset, and offset
note = self.stream(self.triple_merger(torch_cat((x, onset, offset), -1)), 'note', key_padding_mask)
elif self.wiring == 'tiktok2':
onset = self.stream(x, 'onset', key_padding_mask)
offset = self.stream(x, 'offset', key_padding_mask)
# note is connected to f0, onset, and offset
note = self.stream(self.triple_merger(torch_cat((f0, onset, offset), -1)), 'note', key_padding_mask)
elif self.wiring == 'spotify':
# note is connected to f0 only
note = self.stream(f0, 'note', key_padding_mask)
# here onset and onsets are higher-level features informed by the separator and note
onset = self.stream(self.double_merger(torch_cat((x, note), -1)), 'onset', key_padding_mask)
offset = self.stream(self.double_merger(torch_cat((x, note), -1)), 'offset', key_padding_mask)
else:
# onset and offset are connected to f0 and separator streams
onset = self.stream(self.double_merger(torch_cat((x, f0), -1)), 'onset', key_padding_mask)
offset = self.stream(self.double_merger(torch_cat((x, f0), -1)), 'offset', key_padding_mask)
# note is connected to f0, onset, and offset streams
note = self.stream(self.triple_merger(torch_cat((f0, onset, offset), -1)), 'note', key_padding_mask)
return {'f0': self.head(f0, 'f0'),
'note': self.head(note, 'note'),
'onset': self.head(onset, 'onset'),
'offset': self.head(offset, 'offset')}
class PretrainedModel(FourHeads):
def __init__(self,model_json:dict,model:str,device):
super().__init__(pathway_multiscale=model_json['pathway_multiscale'],num_pathway_layers=model_json['num_pathway_layers'], wiring=model_json['wiring'],hop_length=model_json['hop_length'], chunk_size=model_json['chunk_size'],labeling=PerformanceLabel(note_min=model_json['note_low'], note_max=model_json['note_high'],f0_bins_per_semitone=model_json['f0_bins_per_semitone'],f0_tolerance_c=200,f0_smooth_std_c=model_json['f0_smooth_std_c'], onset_smooth_std=model_json['onset_smooth_std']), sr=model_json['sampling_rate'])
self.load_state_dict(torch_load(model, map_location=device,weights_only=True))
self.eval()
def merge_violin_tracks(self,mid:MidiFile):
new_mid = MidiFile(ticks_per_beat=mid.ticks_per_beat)
new_track = MidiTrack()
new_mid.tracks.append(new_track)
events = []
for track in mid.tracks:
current_time = 0
for msg in track:
current_time += msg.time
events.append((current_time, msg))
events.sort(key=lambda x: x[0])
last_time = 0
for event_time, msg in events:
delta_time = event_time - last_time
new_track.append(msg.copy(time=delta_time))
last_time = event_time
for track in mid.tracks:
for msg in track:
if msg.type == 'set_tempo':
new_track.insert(0, msg)
return new_mid
def transcribe_music(self, audio, batch_size, postprocessing):
self.transcribe(audio, batch_size, postprocessing).write("output.mid")
self.merge_violin_tracks(MidiFile("output.mid")).save("output.mid")
return "output.mid"
|