Spaces:
Runtime error
Runtime error
File size: 2,541 Bytes
da1b0ae 58a182b a9871b8 58a182b da1b0ae e5cef20 da1b0ae e5cef20 3881571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
import os
import requests
url = 'https://huggingface.co/datasets/sheacon/song_lyrics/resolve/main/v2ga_w_embeddings.parquet'
response = requests.get(url, stream=True)
filename = os.path.join(os.getcwd(), url.split('/')[-1])
with open(filename, 'wb') as file:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
file.write(chunk)
print(f"File '{filename}' has been downloaded to the present working directory.")
pwd = os.getcwd()
print("Present Working Directory:", pwd)
contents = os.listdir(pwd)
print("Contents of the Directory:")
for item in contents:
print(item)
df = pd.read_csv('v2ga_w_embeddings.parquet')
def get_most_similar_songs(artist, title, df):
def find_most_similar(embedding_column):
chosen_song = df[(df['artist'] == artist) & (df['title'] == title)][embedding_column].values
if len(chosen_song) == 0:
return None
chosen_song = chosen_song.reshape(1, -1)
similarity_matrix = cosine_similarity(df[embedding_column].values.tolist(), chosen_song)
most_similar_indices = np.argsort(similarity_matrix.flatten())[-5:-1][::-1] # Top 4 excluding the selected song
return df.iloc[most_similar_indices][['title', 'artist', 'lyrics']].to_dict(orient='records')
results = {}
for embedding in ['embedding_glove', 'embedding_minilm', 'embedding_roberta', 'embedding_gpt']:
most_similar = find_most_similar(embedding)
if most_similar is None:
return "Song not found. Please ensure the artist and title are correct."
results[embedding] = most_similar
return results
def update_titles_dropdown(artist):
titles = sorted(df[df['artist'] == artist]['title'].unique())
return titles
artists = sorted(df['artist'].unique())
artist_dropdown = gr.inputs.Dropdown(artists, label="Artist")
title_dropdown = gr.inputs.Dropdown([], label="Title", updatable=True)
output_interface = gr.outputs.JSON(label="Similar Songs")
iface = gr.Interface(
fn=get_most_similar_songs,
inputs=[artist_dropdown, title_dropdown],
outputs=output_interface,
examples=[("The Beatles", "Let It Be"), ("Eminem", "Lose Yourself")],
title="Semantic Song Search: Most Similar Song",
description="Find the 4 most similar songs to the selected song based on different embeddings (GloVe, MiniLM, RoBERTa, GPT).",
update=update_titles_dropdown
)
iface.launch()
|