Spaces:
Sleeping
Sleeping
File size: 1,634 Bytes
a0c4684 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
from fastapi import FastAPI, Body
from crewai import Crew, Process
from agents import SneakerAgents
from tasks import SneakerTasks
from tools.search_tools import SearchTools
from dotenv import load_dotenv
import os
# Load environment variables
dotenv_path = os.path.join(os.path.dirname(__file__), '.env')
load_dotenv(dotenv_path)
# Initialize the SearchTools, SneakerAgents, and SneakerTasks once
search_tools = SearchTools()
agents = SneakerAgents(search_tools)
tasks = SneakerTasks()
class SneakerCrew:
def __init__(self, brand, gender):
self.brand = brand
self.gender = gender
def run(self):
# Sequential initialization of agents
sneaker_expert = agents.sneaker_expert()
resale_expert = agents.resale_expert()
# Sequential creation of tasks
combined_task = tasks.suggest_and_fetch_upcoming_shoes(sneaker_expert, self.brand, self.gender)
estimate_resale_value_task = tasks.estimate_resale_value(resale_expert, self.brand)
# Initialize the crew sequentially
crew = Crew(
agents=[sneaker_expert, resale_expert],
tasks=[combined_task, estimate_resale_value_task],
verbose=True,
process=Process.sequential
)
result = crew.kickoff()
return result
app = FastAPI()
@app.post("/sneaker_worth_finder")
def sneaker_worth_finder(brand: str = Body(...), gender: str = Body(...)):
sneaker_crew = SneakerCrew(brand, gender)
result = sneaker_crew.run()
return result
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8002) |