File size: 7,914 Bytes
452509d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import torch.nn.functional as F
import os
import argparse
from tqdm import trange
from transformers import GPT2LMHeadModel


def is_word(word):
    for item in list(word):
        if item not in 'qwertyuiopasdfghjklzxcvbnm':
            return False
    return True


def _is_chinese_char(char):
    """Checks whether CP is the codepoint of a CJK character."""
    # This defines a "chinese character" as anything in the CJK Unicode block:
    #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
    #
    # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
    # despite its name. The modern Korean Hangul alphabet is a different block,
    # as is Japanese Hiragana and Katakana. Those alphabets are used to write
    # space-separated words, so they are not treated specially and handled
    # like the all of the other languages.
    cp = ord(char)
    if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
            (cp >= 0x3400 and cp <= 0x4DBF) or  #
            (cp >= 0x20000 and cp <= 0x2A6DF) or  #
            (cp >= 0x2A700 and cp <= 0x2B73F) or  #
            (cp >= 0x2B740 and cp <= 0x2B81F) or  #
            (cp >= 0x2B820 and cp <= 0x2CEAF) or
            (cp >= 0xF900 and cp <= 0xFAFF) or  #
            (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
        return True

    return False


def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (vocabulary size)
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    assert logits.dim() == 1  # batch size 1 for now - could be updated for more but the code would be less clear
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits


def sample_sequence(model, context, length, n_ctx, tokenizer, temperature=1.0, top_k=30, top_p=0.0, repitition_penalty=1.0,
                    device='cpu'):
    context = torch.tensor(context, dtype=torch.long, device=device)
    context = context.unsqueeze(0)
    generated = context
    with torch.no_grad():
        for _ in trange(length):
            inputs = {'input_ids': generated[0][-(n_ctx - 1):].unsqueeze(0)}
            outputs = model(
                **inputs)  # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
            next_token_logits = outputs[0][0, -1, :]
            for id in set(generated):
                next_token_logits[id] /= repitition_penalty
            next_token_logits = next_token_logits / temperature
            next_token_logits[tokenizer.convert_tokens_to_ids('[UNK]')] = -float('Inf')
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
            next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
            generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
    return generated.tolist()[0]


def fast_sample_sequence(model, context, length, temperature=1.0, top_k=30, top_p=0.0, device='cpu'):
    inputs = torch.LongTensor(context).view(1, -1).to(device)
    if len(context) > 1:
        _, past = model(inputs[:, :-1], None)[:2]
        prev = inputs[:, -1].view(1, -1)
    else:
        past = None
        prev = inputs
    generate = [] + context
    with torch.no_grad():
        for i in trange(length):
            output = model(prev, past=past)
            output, past = output[:2]
            output = output[-1].squeeze(0) / temperature
            filtered_logits = top_k_top_p_filtering(output, top_k=top_k, top_p=top_p)
            next_token = torch.multinomial(torch.softmax(filtered_logits, dim=-1), num_samples=1)
            generate.append(next_token.item())
            prev = next_token.view(1, 1)
    return generate


# 通过命令行参数--fast_pattern,指定模式
def generate(n_ctx, model, context, length, tokenizer, temperature=1, top_k=0, top_p=0.0, repitition_penalty=1.0, device='cpu',
             is_fast_pattern=False):
    if is_fast_pattern:
        return fast_sample_sequence(model, context, length, temperature=temperature, top_k=top_k, top_p=top_p,
                                    device=device)
    else:
        return sample_sequence(model, context, length, n_ctx, tokenizer=tokenizer, temperature=temperature, top_k=top_k, top_p=top_p,
                               repitition_penalty=repitition_penalty, device=device)

def smp_generate(pre_str):

    from tokenizations import tokenization_bert

    os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3'  # 此处设置程序使用哪些显卡
    length = 500
    batch_size = 1
    nsamples = 1
    temperature = 1
    topk = 8
    topp = 0
    repetition_penalty = 1.0
    model_path = 'pretrained'
    tokenizer_path = 'cache/vocab.txt'
    save_samples = False
    save_samples_path = '.'
    fast_pattern = True
    prefix = pre_str

    device = "cuda" if torch.cuda.is_available() else "cpu"

    tokenizer = tokenization_bert.BertTokenizer(vocab_file=tokenizer_path)
    model = GPT2LMHeadModel.from_pretrained(model_path)
    model.to(device)
    model.eval()

    n_ctx = model.config.n_ctx

    if length == -1:
        length = model.config.n_ctx

    while True:
        raw_text = prefix
        context_tokens = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(raw_text))
        generated = 0
        for _ in range(nsamples // batch_size):
            out = generate(
                n_ctx=n_ctx,
                model=model,
                context=context_tokens,
                length=length,
                is_fast_pattern=fast_pattern, tokenizer=tokenizer,
                temperature=temperature, top_k=topk, top_p=topp, repitition_penalty=repetition_penalty, device=device
            )
            for i in range(batch_size):
                generated += 1
                text = tokenizer.convert_ids_to_tokens(out)
                for i, item in enumerate(text[:-1]):  # 确保英文前后有空格
                    if is_word(item) and is_word(text[i + 1]):
                        text[i] = item + ' '
                for i, item in enumerate(text):
                    if item == '[MASK]':
                        text[i] = ''
                    elif item == '[CLS]':
                        text[i] = '\n\n'
                    elif item == '[SEP]':
                        text[i] = '\n'
                info = "=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40 + "\n"
                text = ''.join(text).replace('##', '').strip()
                return text


if __name__ == '__main__':
    print(smp_generate('曹贼休走'))