Spaces:
Runtime error
Runtime error
File size: 5,993 Bytes
3c10631 6ae4112 3c10631 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import torch
import torch.nn.functional as F
from PIL import Image
import pytorch_lightning as pl
import torch.nn as nn
from torchvision import transforms as T
from torchvision import models
import matplotlib.pyplot as plt
import onnxruntime as ort
from glob import glob
import streamlit as st
import numpy as np
from torchmetrics.functional import accuracy
from torchmetrics import Accuracy
#Define the labels
labels = ['Defect', 'Non-Defect']
# Define the sample images
sample_images = {
"Defect01": "pics/Defect/c1r1e1n24.tif",
"Defect02": "pics/Defect/c1r1e1n35.tif",
"Defect03": "pics/Defect/c1r1e2n44.tif",
"Non-Defect01": "pics/nDefect/c1r1e0n15.tif",
"Non-Defect02": "pics/nDefect/c1r1e0n25.tif",
"Non-Defect03": "pics/nDefect/c1r1e0n38.tif"
}
class DefectResNet(pl.LightningModule):
def __init__(self, n_classes=2):
super(DefectResNet, self).__init__()
# จำนวนของพันธุ์output (2)
self.n_classes = n_classes
#เปลี่ยน layer สุดท้าย
self.backbone = models.resnet50(pretrained=True)
# self.backbone = models.resnet152(pretrained=True)
# self.backbone = models.vgg19(pretrained=True)
for param in self.backbone.parameters():
param.requires_grad = False
# เปลี่ยน fc layer เป็น output ขนาด 2
self.backbone.fc = torch.nn.Linear(self.backbone.fc.in_features, n_classes) #For ResNet base mdoel
# self.backbone.classifier[6] = torch.nn.Linear(self.backbone.classifier[6].in_features, n_classes) #For VGG bse model
self.entropy_loss = nn.CrossEntropyLoss()
self.accuracy = Accuracy(task="multiclass", num_classes=2)
self.save_hyperparameters(logger=False)
def forward(self, x):
preds = self.backbone(x)
return preds
def training_step(self, batch, batch_idx):
x, y = batch
logits = self.backbone(x)
loss = self.entropy_loss(logits, y)
y_pred = torch.argmax(logits, dim=1)
self.log("train_loss", loss)
self.log("train_acc", self.accuracy(y_pred, y))
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self.backbone(x)
loss = self.entropy_loss(logits, y)
y_pred = torch.argmax(logits, dim=1)
self.log("val_loss", loss)
self.log("val_acc", self.accuracy(y_pred, y))
return loss
def configure_optimizers(self):
self.optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
return {
"optimizer": self.optimizer,
"monitor": "val_loss",
}
def test_step(self, batch, batch_idx):
x, y = batch
logits = self.backbone(x)
loss = self.entropy_loss(logits, y)
y_pred = torch.argmax(logits, dim=1)
self.log("val_loss", loss)
self.log("val_acc", self.accuracy(y_pred, y))
return loss
def _shared_eval_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
logits = self.backbone(x)
loss = self.entropy_loss(logits, y)
acc = accuracy(y_hat, y)
return loss, acc
# Load the model on the appropriate device
loadmodel = DefectResNet()
def load_checkpoint(checkpoint):
loadmodel.load_state_dict(checkpoint["state_dict"])
load_checkpoint(torch.load("models/model.ckpt", map_location=torch.device('cpu')))
loadmodel.eval()
transform = T.Compose([
T.Resize((224, 224)),
T.ToTensor()
])
def predict(image):
image = transform(image).unsqueeze(0)
# Perform the prediction
with torch.no_grad():
logits = loadmodel(image)
probs = F.softmax(logits, dim=1)
return probs
# Define the Streamlit app
def app():
predictions = None
st.title("Textile Defect Detection")
uploaded_file = st.file_uploader("Upload your image...", type=["jpg"])
with st.expander("Or choose from sample here..."):
sample = st.selectbox(label = "Select here", options = list(sample_images.keys()), label_visibility="hidden")
col1, col2, col3 = st.columns(3)
with col1:
st.image(sample_images["Defect01"], caption="Defect01", use_column_width=True)
with col2:
st.image(sample_images["Defect02"], caption="Defect02", use_column_width=True)
with col3:
st.image(sample_images["Defect03"], caption="Defect03", use_column_width=True)
col1, col2, col3 = st.columns(3)
with col1:
st.image(sample_images["Non-Defect01"], caption="Non-Defect01", use_column_width=True)
with col2:
st.image(sample_images["Non-Defect02"], caption="Non-Defect02", use_column_width=True)
with col3:
st.image(sample_images["Non-Defect03"], caption="Non-Defect03", use_column_width=True)
# If an image is uploaded, make a prediction on it
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
predictions = predict(image)
elif sample:
image = Image.open(sample_images[sample])
st.image(image, caption=sample.capitalize() + " Image", use_column_width=True)
predictions = predict(image)
# Show predictions with their probabilities
if predictions is not None:
# st.write(predictions)
st.subheader(f'Predictions : {labels[torch.argmax(predictions[0]).item()]}')
for pred, prob in zip(labels, predictions[0]):
st.write(f"{pred}: {prob * 100:.2f}%")
st.progress(prob.item())
else:
st.write("No predictions.")
st.subheader("Credits")
st.write("By : Keyush | Tejas | Jenil")
st.markdown("Source : [Hugging Face](https://huggingface.co/shahkeyush2002/Textile-Defect-Detection)")
# Run the app
if __name__ == "__main__":
app() |