File size: 16,435 Bytes
a0f3435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1eed9f
a0f3435
e1eed9f
 
 
a0f3435
e1eed9f
 
a0f3435
 
e1eed9f
a0f3435
 
 
e1eed9f
a0f3435
 
e1eed9f
a0f3435
 
e1eed9f
a0f3435
d20970f
e1eed9f
 
 
 
d20970f
e1eed9f
d20970f
 
e1eed9f
d20970f
e1eed9f
d20970f
e1eed9f
 
a0f3435
 
 
e1eed9f
 
 
 
a0f3435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1eed9f
a0f3435
 
d20970f
e1eed9f
a0f3435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# crypto_price_prediction.py
import os
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import ReduceLROnPlateau
import numpy as np
import pandas as pd
import yfinance as yf
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import gradio as gr
from sklearn.preprocessing import MinMaxScaler
from datetime import datetime, timedelta
import joblib
import warnings
import ta
from tqdm import tqdm

warnings.filterwarnings('ignore')

class PriceScaler:
    def __init__(self):
        self.scaler = MinMaxScaler()

    def fit_transform(self, data):
        data_2d = np.array(data).reshape(-1, 1)
        return self.scaler.fit_transform(data_2d).flatten()

    def inverse_transform(self, data):
        data_2d = np.array(data).reshape(-1, 1)
        return self.scaler.inverse_transform(data_2d).flatten()

class CryptoPredictor(nn.Module):
    def __init__(self, input_dim, hidden_dim=128, num_layers=2, dropout=0.2):
        super().__init__()
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.lstm = nn.LSTM(
            input_dim, hidden_dim, num_layers=num_layers, batch_first=True,
            dropout=dropout if num_layers > 1 else 0, bidirectional=True
        )
        self.bn = nn.BatchNorm1d(hidden_dim * 2)
        self.fc = nn.Sequential(
            nn.Linear(hidden_dim * 2, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, 1)
        )
        self.confidence_fc = nn.Sequential(
            nn.Linear(hidden_dim * 2, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        batch_size = x.size(0)
        h0 = torch.zeros(self.num_layers * 2, batch_size, self.hidden_dim).to(x.device)
        c0 = torch.zeros(self.num_layers * 2, batch_size, self.hidden_dim).to(x.device)
        lstm_out, _ = self.lstm(x, (h0, c0))
        last_hidden = lstm_out[:, -1, :]
        normalized_hidden = self.bn(last_hidden)
        prediction = self.fc(normalized_hidden)
        confidence = self.confidence_fc(normalized_hidden)
        return prediction, confidence

class CryptoAnalyzer:
    def __init__(self, model_dir="models", cache_dir="cache"):
        self.scaler = MinMaxScaler()
        self.price_scaler = PriceScaler()
        self.model_dir = model_dir
        self.cache_dir = cache_dir
        os.makedirs(model_dir, exist_ok=True)
        os.makedirs(cache_dir, exist_ok=True)
        self.feature_columns = [
            'Open', 'High', 'Low', 'Close', 'Volume', 'Returns', 'Volatility',
            'MA5', 'MA20', 'RSI', 'Price_Momentum', 'Volume_Momentum', 'MACD',
            'BB_upper', 'BB_lower', 'Stoch_K', 'Stoch_D', 'ADX', 'ATR'
        ]
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    def get_data(self, symbol, days):
        end_date = datetime.now()
        start_date = end_date - timedelta(days=days + 30)
        df = yf.download(f"{symbol}-USD", start=start_date, end=end_date, progress=False)
        if df.empty:
            raise ValueError(f"No data available for {symbol}")
        df['Returns'] = df['Close'].pct_change()
        df['Volatility'] = df['Returns'].rolling(window=20).std()
        df['MA5'] = df['Close'].rolling(window=5).mean()
        df['MA20'] = df['Close'].rolling(window=20).mean()
        df['RSI'] = ta.momentum.rsi(df['Close'])
        df['Price_Momentum'] = ta.momentum.roc(df['Close'])
        df['Volume_Momentum'] = ta.momentum.roc(df['Volume'])
        macd = ta.trend.macd(df['Close'])
        df['MACD'] = macd.iloc[:, 0]
        bollinger = ta.volatility.BollingerBands(df['Close'])
        df['BB_upper'] = bollinger.bollinger_hband()
        df['BB_lower'] = bollinger.bollinger_lband()
        stoch = ta.momentum.StochasticOscillator(df['High'], df['Low'], df['Close'])
        df['Stoch_K'] = stoch.stoch()
        df['Stoch_D'] = stoch.stoch_signal()
        df['ADX'] = ta.trend.adx(df['High'], df['Low'], df['Close'])
        df['ATR'] = ta.volatility.average_true_range(df['High'], df['Low'], df['Close'])
        df = df.dropna()
        return df.iloc[-days:]

    def prepare_data(self, df, lookback):
        features = df[self.feature_columns].values
        scaled_features = self.scaler.fit_transform(features)
        close_prices = df['Close'].values
        scaled_close = self.price_scaler.fit_transform(close_prices)
        X, y = [], []
        for i in range(len(df) - lookback):
            X.append(scaled_features[i:(i + lookback)])
            y.append(scaled_close[i + lookback])
        X = torch.FloatTensor(np.array(X)).to(self.device)
        y = torch.FloatTensor(np.array(y)).reshape(-1).to(self.device)
        return X, y

    def get_model_path(self, symbol):
        return os.path.join(self.model_dir, f"{symbol.lower()}_model.pth")

    def get_scaler_path(self, symbol):
        return os.path.join(self.model_dir, f"{symbol.lower()}_scaler.pkl")

    def train_model(self, X, y, symbol):
        model = CryptoPredictor(X.shape[2]).to(self.device)
        criterion = nn.HuberLoss()
        optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=0.01)
        scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True)
        batch_size = min(32, len(X) // 4)
        dataset = torch.utils.data.TensorDataset(X, y)
        train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
        best_loss = float('inf')
        patience = 10
        patience_counter = 0
        model.train()
        with tqdm(range(50), desc=f"Training {symbol} model") as pbar:
            for epoch in pbar:
                total_loss = 0
                for batch_X, batch_y in train_loader:
                    optimizer.zero_grad()
                    predictions, _ = model(batch_X)
                    loss = criterion(predictions, batch_y)
                    loss.backward()
                    torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
                    optimizer.step()
                    total_loss += loss.item()
                avg_loss = total_loss / len(train_loader)
                scheduler.step(avg_loss)
                pbar.set_postfix({'loss': f'{avg_loss:.6f}'})
                if avg_loss < best_loss:
                    best_loss = avg_loss
                    patience_counter = 0
                    torch.save(model.state_dict(), self.get_model_path(symbol))
                else:
                    patience_counter += 1
                    if patience_counter >= patience:
                        break
        return model

    def get_predictions(self, symbol, days, lookback):
        try:
            logging.info("Fetching data...")
            df = self.get_data(symbol, days)
            logging.info(f"Data fetched: {len(df)} rows.")

            logging.info("Preparing data...")
            X, y = self.prepare_data(df, lookback)
            logging.info(f"Data prepared. Features shape: {X.shape}, Targets shape: {y.shape}")

            model_path = self.get_model_path(symbol)
            if os.path.exists(model_path):
                logging.info("Loading existing model...")
                model = CryptoPredictor(X.shape[2]).to(self.device)
                model.load_state_dict(torch.load(model_path))
            else:
                logging.info("Training new model...")
                model = self.train_model(X, y, symbol)
                joblib.dump(self.scaler, self.get_scaler_path(symbol))
        
            model.eval()
            with torch.no_grad():
                logging.info("Generating predictions...")
                predictions, confidence = model(X)
            
                # Log raw predictions shape
                logging.info(f"Raw predictions shape: {predictions.shape}")
            
                # Ensure predictions are 2D for inverse_transform
                predictions_reshaped = predictions.cpu().numpy().reshape(-1, 1)
                logging.info(f"Reshaped predictions for inverse transform: {predictions_reshaped.shape}")
                predictions = self.price_scaler.inverse_transform(predictions_reshaped).flatten()

                # Ensure actual prices are 2D for inverse_transform
                y_np_reshaped = y.cpu().numpy().reshape(-1, 1)
                logging.info(f"Reshaped actual prices for inverse transform: {y_np_reshaped.shape}")
                actual_prices = self.price_scaler.inverse_transform(y_np_reshaped).flatten()
    
                # Calculate metrics
                rmse = float(np.sqrt(np.mean((actual_prices - predictions) ** 2)))
                mape = float(np.mean(np.abs((actual_prices - predictions) / actual_prices)) * 100)
                r2 = float(1 - np.sum((actual_prices - predictions) ** 2) / np.sum((actual_prices - actual_prices.mean()) ** 2))
                
                logging.info("Metrics calculated.")
                
                # Prepare date labels
                dates = df.index[lookback:].strftime('%Y-%m-%d').tolist()
                return {
                    'dates': dates,
                    'actual': actual_prices.tolist(),
                    'predicted': predictions.tolist(),
                    'confidence': confidence.cpu().numpy().flatten().tolist(),
                    'rmse': rmse,
                    'mape': mape,
                    'r2': r2,
                    'volatility': float(df['Volatility'].mean() * 100),
                    'current_price': float(df['Close'].iloc[-1]),
                    'volume': float(df['Volume'].iloc[-1]),
                    'rsi': float(df['RSI'].iloc[-1]),
                    'macd': float(df['MACD'].iloc[-1])
                }
        except Exception as e:
            logging.error(f"Error during predictions: {str(e)}")
            raise ValueError(f"Prediction failed: {str(e)}")



def create_analysis_plots(symbol, days=180, lookback=30):
    try:
        analyzer = CryptoAnalyzer()
        predictions = analyzer.get_predictions(symbol, days, lookback)
        fig = make_subplots(
            rows=3, cols=1,
            subplot_titles=(
                f"{symbol} Price Prediction with Confidence Bands",
                "Technical Indicators",
                "Model Performance Metrics"
            ),
            vertical_spacing=0.1,
            specs=[[{"secondary_y": True}],
                  [{"secondary_y": True}],
                  [{"secondary_y": True}]]
        )
        confidence_upper = np.array(predictions['predicted']) * (1 + np.array(predictions['confidence']))
        confidence_lower = np.array(predictions['predicted']) * (1 - np.array(predictions['confidence']))
        fig.add_trace(
            go.Scatter(
                x=predictions['dates'],
                y=predictions['actual'],
                name='Actual Price',
                line=dict(color='blue', width=2)
            ),
            row=1, col=1
        )
        fig.add_trace(
            go.Scatter(
                x=predictions['dates'],
                y=predictions['predicted'],
                name='Predicted Price',
                line=dict(color='red', width=2)
            ),
            row=1, col=1
        )
        fig.add_trace(
            go.Scatter(
                x=predictions['dates'] + predictions['dates'][::-1],
                y=list(confidence_upper) + list(confidence_lower)[::-1],
                fill='toself',
                fillcolor='rgba(255,0,0,0.1)',
                line=dict(color='rgba(255,0,0,0)'),
                name='Confidence Band'
            ),
            row=1, col=1
        )
        fig.update_layout(
            height=1200,
            title_text=f"πŸ“ˆ {symbol} Price Analysis Dashboard",
            showlegend=True,
            template="plotly_dark",
            paper_bgcolor='rgba(0,0,0,0)',
            plot_bgcolor='rgba(0,0,0,0)',
            font=dict(size=12)
        )
        summary = f"""
### πŸ“Š Analysis Summary for {symbol}

#### Current Market Status
- **Current Price:** ${predictions['current_price']:,.2f}
- **Predicted Next Price:** ${predictions['predicted'][-1]:,.2f}
- **Expected Change:** {((predictions['predicted'][-1] - predictions['current_price']) / predictions['current_price'] * 100):,.2f}%
- **24h Volume:** {predictions['volume']:,.0f}

#### Technical Indicators
- **RSI:** {predictions['rsi']:,.2f}
- **MACD:** {predictions['macd']:,.2f}
- **Volatility:** {predictions['volatility']:,.2f}%

#### Model Performance Metrics
- **RΒ² Score:** {predictions['r2']:,.4f}
- **RMSE:** ${predictions['rmse']:,.2f}
- **MAPE:** {predictions['mape']:,.2f}%

#### Prediction Confidence
- **Average Confidence:** {np.mean(predictions['confidence']) * 100:,.2f}%
- **Trend Direction:** {'πŸ”Ί Upward' if predictions['predicted'][-1] > predictions['actual'][-1] else 'πŸ”» Downward'}

> *Note: Past performance does not guarantee future results. This analysis is for informational purposes only.*
        """
        return fig, summary
    except Exception as e:
        fig = go.Figure()
        fig.add_annotation(
            text=str(e),
            xref="paper",
            yref="paper",
            x=0.5,
            y=0.5,
            showarrow=False
        )
        return fig, f"⚠️ Error: {str(e)}"

def create_interface():
    with gr.Blocks(theme=gr.themes.Soft()) as iface:
        gr.Markdown("""
        # πŸš€ Advanced Cryptocurrency Price Prediction

        This app uses deep learning to predict cryptocurrency prices and provide comprehensive market analysis.

        ### Features:
        - Real-time price predictions
        - Technical indicators analysis
        - Confidence metrics
        - Performance visualization
        """)
        with gr.Row():
            with gr.Column(scale=1):
                crypto_input = gr.Dropdown(
                    choices=['BTC', 'ETH', 'BNB', 'XRP', 'ADA', 'SOL', 'DOT', 'DOGE'],
                    label="Select Cryptocurrency",
                    value="BTC"
                )
                custom_crypto = gr.Textbox(
                    label="Or enter custom symbol",
                    placeholder="e.g., MATIC"
                )
                with gr.Row():
                    days_slider = gr.Slider(
                        minimum=30, maximum=365, value=180, step=30,
                        label="Historical Days"
                    )
                    lookback_slider = gr.Slider(
                        minimum=7, maximum=60, value=30, step=1,
                        label="Lookback Period (Days)"
                    )
                submit_btn = gr.Button("πŸ“Š Generate Analysis", variant="primary")
            with gr.Column(scale=2):
                plot_output = gr.Plot(label="Analysis Plots")
        with gr.Row():
            analysis_output = gr.Markdown(label="Analysis Summary")
            error_output = gr.Markdown(visible=False)
        def handle_analysis(symbol, custom_symbol, days, lookback):
            try:
                final_symbol = custom_symbol if custom_symbol else symbol
                figure, summary = create_analysis_plots(final_symbol, days, lookback)
                return figure, summary, gr.update(visible=False, value="")
            except Exception as e:
                empty_fig = go.Figure()
                error_msg = f"⚠️ Error during analysis: {str(e)}"
                return empty_fig, "", gr.update(visible=True, value=error_msg)
        submit_btn.click(
            fn=handle_analysis,
            inputs=[crypto_input, custom_crypto, days_slider, lookback_slider],
            outputs=[plot_output, analysis_output, error_output]
        )
    return iface

if __name__ == "__main__":
    import logging
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(levelname)s - %(message)s',
        handlers=[
            logging.FileHandler('crypto_predictor.log'),
            logging.StreamHandler()
        ]
    )
    try:
        os.makedirs("models", exist_ok=True)
        os.makedirs("cache", exist_ok=True)
        iface = create_interface()
        iface.launch(
            share=False, server_name="0.0.0.0", server_port=7860, debug=True
        )
    except Exception as e:
        logging.error(f"Application failed to start: {str(e)}")
        raise