Spaces:
Sleeping
Sleeping
File size: 13,499 Bytes
ba0fd1a 14da270 ba0fd1a 14da270 c0c3449 259a06b 6f497f3 259a06b c0c3449 6f497f3 259a06b c0c3449 259a06b c0c3449 259a06b c0c3449 259a06b c0c3449 259a06b 7ed817f 259a06b c0c3449 259a06b c0c3449 259a06b c0c3449 259a06b c0c3449 259a06b c0c3449 259a06b c0c3449 259a06b c0c3449 259a06b c0c3449 259a06b c0c3449 7ed817f c0c3449 259a06b c0c3449 259a06b c0c3449 259a06b 7ed817f 259a06b c0c3449 e8b87ec c0c3449 e8b87ec 259a06b c0c3449 259a06b 7ed817f 259a06b e8b87ec 259a06b c0c3449 e8b87ec c0c3449 259a06b e8b87ec 259a06b e8b87ec 259a06b e8b87ec 259a06b 6f497f3 259a06b c0c3449 259a06b c0c3449 a307e20 c0c3449 a307e20 14da270 259a06b 6f497f3 259a06b b60ff26 c0c3449 259a06b b60ff26 ba0fd1a 7ed817f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import streamlit as st
from transformers import pipeline
from PIL import Image
import io
from pptx import Presentation
from pptx.util import Inches, Pt
from pptx.dml.color import RGBColor
from pptx.enum.text import PP_ALIGN
import docx
import PyPDF2
from pptx import Presentation as PPTXPresentation
import pandas as pd
import numpy as np
from typing import List, Dict, Any, Optional, Tuple
import time
import requests
from bs4 import BeautifulSoup
import re
import tempfile
import logging
from pathlib import Path
import json
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Nutrition-specific knowledge base
NUTRITION_FIELDS = {
"Clinical Nutrition": [
"Medical Nutrition Therapy",
"Disease-Specific Diets",
"Nutritional Assessment",
"Hospital Dietetics",
"Nutrition Care Process"
],
"Sports Nutrition": [
"Performance Nutrition",
"Sports Supplements",
"Hydration Strategies",
"Pre/Post Workout Nutrition",
"Recovery Nutrition"
],
"Community Nutrition": [
"Public Health Nutrition",
"Food Security",
"Population Health",
"School Nutrition",
"Cultural Food Practices"
],
"Therapeutic Nutrition": [
"Diet Therapy",
"Disease Management",
"Metabolic Disorders",
"Diabetes Management",
"Cardiovascular Nutrition"
]
}
class ContentEnricher:
@staticmethod
def fetch_open_images(topic: str) -> Optional[str]:
"""Fetch free images from Unsplash's public website"""
try:
url = f"https://source.unsplash.com/featured/?{topic.replace(' ', ',')}"
response = requests.get(url, stream=True)
if response.status_code == 200:
return url
except Exception as e:
logger.warning(f"Error fetching image: {e}")
return None
@staticmethod
def fetch_pubmed_content(topic: str) -> str:
"""Fetch content from PubMed's public RSS feed"""
try:
url = f"https://pubmed.ncbi.nlm.nih.gov/rss/search/1?term={topic.replace(' ', '+')}"
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'xml')
items = soup.find_all('item')
content = []
for item in items[:3]: # Get first 3 articles
title = item.title.text
desc = item.description.text
content.append(f"{title}\n{desc}")
return "\n\n".join(content)
except Exception as e:
logger.warning(f"Error fetching PubMed content: {e}")
return ""
@staticmethod
def fetch_nutrition_gov(topic: str) -> str:
"""Fetch content from nutrition.gov public pages"""
try:
url = f"https://www.nutrition.gov/search/{topic.replace(' ', '+')}"
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
content = []
for p in soup.find_all('p')[:5]:
content.append(p.text.strip())
return "\n".join(content)
except Exception as e:
logger.warning(f"Error fetching Nutrition.gov content: {e}")
return ""
class FileProcessor:
@staticmethod
def process_txt(file) -> str:
return file.read().decode('utf-8')
@staticmethod
def process_docx(file) -> str:
doc = docx.Document(file)
return "\n".join([paragraph.text for paragraph in doc.paragraphs])
@staticmethod
def process_pdf(file) -> str:
pdf_reader = PyPDF2.PdfReader(file)
return "\n".join([page.extract_text() for page in pdf_reader.pages])
@staticmethod
def process_pptx(file) -> str:
prs = PPTXPresentation(file)
text_content = []
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text_content.append(shape.text)
return "\n".join(text_content)
class PresentationGenerator:
def __init__(self):
self.text_generator = self.load_text_generator()
self.content_enricher = ContentEnricher()
self.file_processor = FileProcessor()
@staticmethod
@st.cache_resource
def load_text_generator():
return pipeline("text-generation", model="gpt2-medium")
def add_image_to_slide(self, slide, image_url: str):
try:
response = requests.get(image_url, stream=True)
if response.status_code == 200:
img_path = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg").name
with open(img_path, "wb") as f:
f.write(response.content)
slide.shapes.add_picture(img_path, Inches(1), Inches(1), Inches(4), Inches(3))
except Exception as e:
logger.warning(f"Failed to add image to slide: {e}")
def create_slide(self, prs: Presentation, title: str, points: List[str], image_url: Optional[str], template_style: str) -> None:
slide = prs.slides.add_slide(prs.slide_layouts[1])
# Set title
title_shape = slide.shapes.title
title_shape.text = title
# Style based on template
if template_style == "Professional":
title_shape.text_frame.paragraphs[0].font.size = Pt(40)
title_shape.text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 51, 102)
# Add content
content_shape = slide.shapes.placeholders[1]
text_frame = content_shape.text_frame
for point in points:
p = text_frame.add_paragraph()
p.text = "β’ " + point
p.font.size = Pt(18)
p.font.color.rgb = RGBColor(51, 51, 51)
# Add image if available
if image_url:
self.add_image_to_slide(slide, image_url)
def generate_content(self, topic: str, base_content: str, category: str) -> Dict[str, Any]:
"""Generate enhanced content with multiple sources"""
try:
# Combine content from multiple sources
pubmed_content = self.content_enricher.fetch_pubmed_content(topic)
nutrition_gov_content = self.content_enricher.fetch_nutrition_gov(topic)
combined_content = f"{base_content}\n{pubmed_content}\n{nutrition_gov_content}"
# Generate with context
prompt = f"Create educational content about {topic} in {category}:\n{combined_content}"
generated = self.text_generator(
prompt,
max_length=500,
num_return_sequences=1,
temperature=0.7
)[0]['generated_text']
# Process into sections
sections = self.process_content(generated)
return {
'content': generated,
'sections': sections,
'topic': topic,
'category': category
}
except Exception as e:
logger.error(f"Error generating content: {e}")
st.error(f"Error generating content: {str(e)}")
return None
def process_content(self, content: str, max_points: int = 5) -> List[Dict]:
"""Process content into well-structured sections"""
sections = []
current_section = {'title': '', 'points': []}
for line in content.split('\n'):
line = line.strip()
if not line:
continue
if line.endswith(':'):
if current_section['points']:
sections.append(current_section)
current_section = {'title': line.rstrip(':'), 'points': []}
elif line.startswith(('β’', '*', '-')):
if len(current_section['points']) < max_points:
current_section['points'].append(line.lstrip('β’*- '))
else:
sentences = line.split('. ')
for sentence in sentences[:max_points - len(current_section['points'])]:
if sentence.strip():
current_section['points'].append(sentence.strip())
if current_section['points']:
sections.append(current_section)
return sections
def create_presentation(self, title: str, content: Dict[str, Any],
template: str) -> Optional[io.BytesIO]:
try:
prs = Presentation()
# Title slide
title_slide = prs.slides.add_slide(prs.slide_layouts[0])
title_slide.shapes.title.text = title
# Process sections
progress_bar = st.progress(0)
for idx, section in enumerate(content['sections']):
image_url = self.content_enricher.fetch_open_images(section['title'])
self.create_slide(prs, section['title'], section['points'], image_url, template)
progress_bar.progress((idx + 1) / len(content['sections']))
# Save
output = io.BytesIO()
prs.save(output)
output.seek(0)
return output
except Exception as e:
logger.error(f"Error creating presentation: {e}")
st.error(f"Error creating presentation: {str(e)}")
return None
def main():
st.set_page_config(page_title="DietitianSlide AI", layout="wide", page_icon="π₯")
generator = PresentationGenerator()
st.title("π₯ DietitianSlide AI - Professional Nutrition Presentations")
# Sidebar settings
with st.sidebar:
category = st.selectbox("Nutrition Field", list(NUTRITION_FIELDS.keys()))
topic = st.selectbox("Specific Topic", NUTRITION_FIELDS[category])
template = st.selectbox("Template Style",
["Professional", "Academic", "Modern", "Clinical"])
max_points = st.slider("Points per Slide", 3, 8, 5)
# Main content area
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("Content Input")
content_method = st.radio("Input Method",
["Write Content", "Upload Files", "Both"])
user_content = ""
if content_method in ["Write Content", "Both"]:
user_content = st.text_area("Enter your content", height=150)
if content_method in ["Upload Files", "Both"]:
uploaded_file = st.file_uploader(
"Upload File",
type=["txt", "docx", "pdf", "pptx"]
)
if uploaded_file:
file_content = ""
if uploaded_file.type == "text/plain":
file_content = generator.file_processor.process_txt(uploaded_file)
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
file_content = generator.file_processor.process_docx(uploaded_file)
elif uploaded_file.type == "application/pdf":
file_content = generator.file_processor.process_pdf(uploaded_file)
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.presentationml.presentation":
file_content = generator.file_processor.process_pptx(uploaded_file)
if file_content:
st.text_area("Extracted Content", file_content, height=100)
user_content = f"{user_content}\n{file_content}" if user_content else file_content
with col2:
st.subheader("Preview & Generate")
if st.button("Generate Presentation", type="primary"):
if not user_content:
st.error("Please provide some content!")
return
with st.spinner("Generating your presentation..."):
content = generator.generate_content(topic, user_content, category)
if content:
output = generator.create_presentation(
f"{category}: {topic}",
content,
template
)
if output:
st.success("Presentation generated successfully!")
st.download_button(
"π₯ Download Presentation",
output,
f"nutrition_{topic.lower().replace(' ', '_')}.pptx",
"application/vnd.openxmlformats-officedocument.presentationml.presentation"
)
# Preview content
st.subheader("Content Preview")
for section in content['sections']:
st.write(f"**{section['title']}**")
for point in section['points']:
st.write(f"β’ {point}")
if __name__ == "__main__":
main()
|