Spaces:
Runtime error
Runtime error
File size: 1,441 Bytes
0fc4c70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import cv2
import torch
import onnx
import onnxruntime
import numpy as np
from tqdm import tqdm
# https://github.com/yahoo/open_nsfw
class NSFWChecker:
def __init__(self, model_path=None, providers=["CPUExecutionProvider"]):
model = onnx.load(model_path)
self.input_name = model.graph.input[0].name
session_options = onnxruntime.SessionOptions()
self.session = onnxruntime.InferenceSession(model_path, sess_options=session_options, providers=providers)
def is_nsfw(self, img_paths, threshold = 0.85):
skip_step = 1
total_len = len(img_paths)
if total_len < 100: skip_step = 1
if total_len > 100 and total_len < 500: skip_step = 10
if total_len > 500 and total_len < 1000: skip_step = 20
if total_len > 1000 and total_len < 10000: skip_step = 50
if total_len > 10000: skip_step = 100
for idx in tqdm(range(0, total_len, skip_step), total=int(total_len // skip_step), desc="Checking for NSFW contents"):
img = cv2.imread(img_paths[idx])
img = cv2.resize(img, (224,224)).astype('float32')
img -= np.array([104, 117, 123], dtype=np.float32)
img = np.expand_dims(img, axis=0)
score = self.session.run(None, {self.input_name:img})[0][0][1]
if score > threshold:
print(f"Detected nsfw score:{score}")
return True
return False
|