File size: 3,690 Bytes
e48ca55 01f8821 e48ca55 01f8821 e48ca55 01f8821 e48ca55 1fe02e5 e48ca55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import os
import argparse
import gradio as gr
from timeit import default_timer as timer
import torch
import numpy as np
import pandas as pd
from huggingface_hub import hf_hub_download
from model.bart import BartCaptionModel
from utils.audio_utils import load_audio, STR_CH_FIRST
if os.path.isfile("transfer.pth") == False:
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/transfer.pth', 'transfer.pth')
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/electronic.mp3', 'electronic.mp3')
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/orchestra.wav', 'orchestra.wav')
device = "cuda:0" if torch.cuda.is_available() else "cpu"
example_list = ['electronic.mp3', 'orchestra.wav']
model = BartCaptionModel(max_length = 128)
pretrained_object = torch.load('./transfer.pth', map_location='cpu')
state_dict = pretrained_object['state_dict']
model.load_state_dict(state_dict)
if torch.cuda.is_available():
torch.cuda.set_device(device)
model = model.cuda(device)
model.eval()
def get_audio(audio_path, duration=10, target_sr=16000):
n_samples = int(duration * target_sr)
audio, sr = load_audio(
path= audio_path,
ch_format= STR_CH_FIRST,
sample_rate= target_sr,
downmix_to_mono= True,
)
if len(audio.shape) == 2:
audio = audio.mean(0, False) # to mono
input_size = int(n_samples)
if audio.shape[-1] < input_size: # pad sequence
pad = np.zeros(input_size)
pad[: audio.shape[-1]] = audio
audio = pad
ceil = int(audio.shape[-1] // n_samples)
audio = torch.from_numpy(np.stack(np.split(audio[:ceil * n_samples], ceil)).astype('float32'))
return audio
def captioning(audio_path):
audio_tensor = get_audio(audio_path = audio_path)
if device is not None:
audio_tensor = audio_tensor.to(device)
with torch.no_grad():
output = model.generate(
samples=audio_tensor,
num_beams=5,
)
inference = ""
number_of_chunks = range(audio_tensor.shape[0])
for chunk, text in zip(number_of_chunks, output):
time = f"[{chunk * 10}:00-{(chunk + 1) * 10}:00]"
inference += f"{time}\n{text} \n \n"
return inference
title = "Interactive demo: Music Captioning π€π΅"
description = """
<p style='text-align: center'> LP-MusicCaps: LLM-Based Pseudo Music Captioning</p>
<p style='text-align: center'> SeungHeon Doh, Keunwoo Choi, Jongpil Lee, Juhan Nam, ISMIR 2023</p>
<p style='text-align: center'> <a href='#' target='_blank'>ArXiv</a> | <a href='https://github.com/seungheondoh/lp-music-caps' target='_blank'>Github</a> | <a href='https://github.com/seungheondoh/lp-music-caps' target='_blank'>LP-MusicCaps-Dataset</a> </p>
<p style='text-align: center'> To use it, simply upload your audio and click 'submit', or click one of the examples to load them. Read more at the links below. </p>
"""
article = "<p style='text-align: center'><a href='https://github.com/seungheondoh/lp-music-caps' target='_blank'>LP-MusicCaps Github</a> | <a href='#' target='_blank'>LP-MusicCaps Paper</a></p>"
demo = gr.Interface(fn=captioning,
inputs=gr.Audio(type="filepath"),
outputs=[
gr.Textbox(label="Caption generated by LP-MusicCaps Transfer Model"),
],
examples=example_list,
title=title,
description=description,
article=article,
cache_examples=False
)
demo.launch() |