Spaces:
Running
on
L4
Running
on
L4
File size: 6,431 Bytes
f6c5f6c 296f4e8 8497449 296f4e8 d6ff06e f9f0b68 d6ff06e a09a58c 2569c33 ebbe0c2 2569c33 ebbe0c2 2569c33 d6ff06e f9f0b68 d6ff06e ebbe0c2 d6ff06e a09a58c d6ff06e bf13da5 d6ff06e b097347 a09a58c d6ff06e a09a58c d6ff06e a09a58c e0683ff ebbe0c2 a09a58c d6ff06e a09a58c d6ff06e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import os
os.system('pip install gradio-image-prompter')
os.system('pip install pydantic==2.10.6')
import gradio as gr
import torch
import spaces
import json
import base64
from io import BytesIO
from transformers import SamHQModel, SamHQProcessor, SamModel, SamProcessor
import os
import pandas as pd
from utils import *
from PIL import Image
from gradio_image_prompter import ImagePrompter
#sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-huge")
#sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-huge")
sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base", device_map="auto", torch_dtype="auto")
sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
#sam_model = SamModel.from_pretrained("facebook/sam-vit-huge")
#sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
sam_model = SamModel.from_pretrained("facebook/sam-vit-base", device_map="auto", torch_dtype="auto")
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
@spaces.GPU
def predict_masks_and_scores(model, processor, raw_image, input_points=None, input_boxes=None):
if input_boxes is not None:
input_boxes = [input_boxes]
inputs = processor(raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
)
scores = outputs.iou_scores
return masks, scores
def process_inputs(prompts):
raw_entries = prompts["points"]
input_points = []
input_boxes = []
for entry in raw_entries:
x1, y1, type_, x2, y2, cls = entry
if type_ == 1:
input_points.append([int(x1), int(y1)])
elif type_ == 2:
x_min = int(min(x1, x2))
y_min = int(min(y1, y2))
x_max = int(max(x1, x2))
y_max = int(max(y1, y2))
input_boxes.append([x_min, y_min, x_max, y_max])
input_boxes = [input_boxes] if input_boxes else None
input_points = [input_points] if input_points else None
user_image = prompts['image']
sam_masks, sam_scores = predict_masks_and_scores(sam_model, sam_processor, user_image, input_boxes=input_boxes, input_points=input_points)
sam_hq_masks, sam_hq_scores = predict_masks_and_scores(sam_hq_model, sam_hq_processor, user_image, input_boxes=input_boxes, input_points=input_points)
if input_boxes and input_points:
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], input_boxes[0], input_points[0], model_name='SAM')
img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], input_boxes[0], input_points[0], model_name='SAM_HQ')
elif input_boxes:
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], input_boxes[0], None, model_name='SAM')
img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], input_boxes[0], None, model_name='SAM_HQ')
elif input_points:
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], None, input_points[0], model_name='SAM')
img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], None, input_points[0], model_name='SAM_HQ')
else:
img1_b64 = show_all_annotations_on_image_base64(user_image, None, None, None, None, model_name='SAM')
img2_b64 = show_all_annotations_on_image_base64(user_image, None, None, None, None, model_name='SAM_HQ')
print('user_image', user_image)
print("img1_b64", img1_b64)
print("img2_b64", img2_b64)
html_code = f"""
<div style="position: relative; width: 100%; max-width: 600px; margin: 0 auto;" id="imageCompareContainer">
<div style="position: relative; width: 100%;">
<img src="data:image/png;base64,{img1_b64}" style="width:100%; display:block;">
<div id="topWrapper" style="position:absolute; top:0; left:0; width:100%; overflow:hidden;">
<img id="topImage" src="data:image/png;base64,{img2_b64}" style="width:100%;">
</div>
<div id="sliderLine" style="position:absolute; top:0; left:0; width:2px; height:100%; background-color:red; pointer-events:none;"></div>
</div>
<input type="range" min="0" max="100" value="0"
style="width:100%; margin-top: 10px;"
oninput="
const val = this.value;
const container = document.getElementById('imageCompareContainer');
const width = container.offsetWidth;
const clipValue = 100 - val;
document.getElementById('topImage').style.clipPath = 'inset(0 ' + clipValue + '% 0 0)';
document.getElementById('sliderLine').style.left = (width * val / 100) + 'px';
">
</div>
"""
return html_code
process_inputs.zerogpu = True
example_paths = [{"image": 'images/' + path} for path in os.listdir('images')]
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="emerald")
with gr.Blocks(theme=theme, title="π Compare SAM vs SAM-HQ") as demo:
image_path_box = gr.Textbox(visible=False)
gr.Markdown("## π Compare SAM vs SAM-HQ")
gr.Markdown("Compare the performance of SAM and SAM-HQ on various images. Click on an example to load it")
gr.Markdown("[SAM-HQ](https://huggingface.co/syscv-community/sam-hq-vit-huge) - [SAM](https://huggingface.co/facebook/sam-vit-huge)")
print('example_paths', example_paths)
result_html = gr.HTML(elem_id="result-html")
gr.Interface(
fn=process_inputs,
examples=example_paths,
cache_examples=False,
inputs=ImagePrompter(show_label=False),
outputs=result_html,
)
gr.HTML("""
<style>
#result-html {
min-height: 500px;
border: 1px solid #ccc;
padding: 10px;
box-sizing: border-box;
background-color: #fff;
border-radius: 8px;
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);
}
</style>
""")
demo.launch()
|