Spaces:
Running
Running
File size: 4,131 Bytes
dfd33e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import os
import numpy
import torch
from torch import nn
from PIL import Image
from transformers import BertTokenizer
from Model import clip
from Model.bert import BertLMHeadModel, BertConfig
from Model.clip.model import Transformer
class Proj(nn.Module):
def __init__(self, encoder_output_size, num_head=16):
super().__init__()
self.encoder_output_size = encoder_output_size
self.transformer = Transformer(encoder_output_size, 1, num_head)
self.linear = nn.Linear(encoder_output_size, 768)
return
def forward(self, x):
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
return self.linear(x)
class TRCaptionNet(nn.Module):
def __init__(self, config: dict):
super().__init__()
# parameters
self.max_length = config["max_length"]
self.proj_flag = config["proj"]
assert type(self.proj_flag) == bool
self.proj_num_head = config["proj_num_head"]
# vision encoder
self.vision_encoder, preprocess = clip.load(config["clip"], jit=False)
self.vision_encoder.eval()
self.vision_encoder = self.vision_encoder.visual
with torch.no_grad():
dummy_input_image = preprocess(Image.fromarray(numpy.zeros((512, 512, 3), dtype=numpy.uint8))).to(next(self.parameters()).device).half()
encoder_output_size = self.vision_encoder(dummy_input_image.unsqueeze(0)).shape[-1]
self.vision_encoder = self.vision_encoder.float()
# language decoder
if not os.path.isfile(config["bert"]):
self.language_decoder = BertLMHeadModel.from_pretrained(config["bert"],
is_decoder=True,
add_cross_attention=True)
self.tokenizer = BertTokenizer.from_pretrained(config["bert"])
else:
med_config = BertConfig.from_json_file(config["bert"])
self.language_decoder = BertLMHeadModel(config=med_config)
self.tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-turkish-cased")
# proj
if self.proj_flag:
if self.proj_num_head is None:
self.proj = nn.Linear(encoder_output_size, 768)
else:
self.proj = Proj(encoder_output_size, self.proj_num_head)
else:
self.proj = None
return
@torch.no_grad()
def generate(self, images, max_length: int = None, min_length: int = 12, num_beams: int = 3,
repetition_penalty: float = 1.1):
image_embeds = self.vision_encoder(images)
if self.proj is not None:
image_embeds = self.proj(image_embeds)
image_atts = torch.ones(image_embeds.shape[:-1], dtype=torch.long).to(images.device)
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask": image_atts}
input_ids = torch.ones((image_embeds.shape[0], 1), device=images.device, dtype=torch.long)
input_ids *= 2
outputs = self.language_decoder.generate(input_ids=input_ids,
max_length=self.max_length if max_length is None else max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs)
captions = [self.tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
return captions
def test():
model = TRCaptionNet({
"max_length": 35,
"clip": "ViT-B/32",
"bert": "dbmdz/bert-base-turkish-cased"
})
return
if __name__ == '__main__':
test()
|