File size: 16,641 Bytes
7a74e26
5f940bc
170f50c
7a74e26
ce3dfc6
 
 
 
 
 
 
76d7deb
ce3dfc6
 
 
 
 
 
23c33f3
 
 
 
 
 
 
ce3dfc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c33f3
 
 
 
ce3dfc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import sys
sys.path.append("speckleUtils")
import speckle_utils

import os
import json
import pandas as pd
import copy
from functools import wraps
from specklepy.api.client import SpeckleClient
from tripGenerationFunc import *

import gradio as gr
import requests
from huggingface_hub import webhook_endpoint, WebhookPayload
from fastapi import Request
import datetime

curl -X POST -H "Content-Type: application/json" \
     -d '{"payload": {"stream": {"name": "2B_100_batch"}}}' \
     https://serjd-recode-hf-tripgeneration.hf.space/webhooks/update_streams

#https://serjd-recode_hf_tripGeneration.hf.space/webhooks/update_streams
#https://serjd-syncspeckle2notion.hf.space/webhooks/update_streams

current_directory = os.path.dirname(os.path.abspath(__file__))
# Path to the config.json file
config_file_path = os.path.join(current_directory, "config.json")

# Check if the config.json file exists
if os.path.exists(config_file_path):
    # Load the JSON data from config.json
    with open(config_file_path, 'r') as f:
        config = json.load(f)

    # Convert to Python variables with the same names as the keys in the JSON
    locals().update(config)
    print("varaibles from json")
    # Now you can access the variables directly
    print(STREAM_ID)
    print(BRANCH_NAME_LAND_USES)
    print(TARGET_TRIP_RATE)
    print(ALPHA_LOW)
    print(F_VALUES_MANUAL)
    print(distance_matrices_of_interest)
    print(redistributeTrips)
    print(DISTANCE_BRACKETS)
    print(XLS_FILE_PATH)
    print("==================")
else:
    print("Error: config.json file not found in the current directory.")


# checks payload of webhook and runs the main code if webhook was triggered by specified stream + one of the branches
listendStreams = [STREAM_ID]
listendBranchNames = [BRANCH_NAME_LAND_USES,BRANCH_NAME_DISTANCE_MATRIX,BRANCH_NAME_METRIC_DIST_MATRIX]

@webhook_endpoint
async def update_streams(request: Request):
    # Initialize flag
    should_continue = False

    # Read the request body as JSON
    payload = await request.json()

    print("============= payload =============")
    print(payload)
    print("============= payload =============")

    # Check if the payload structure matches the expected format
    if "event" in payload and "data" in payload["event"]:
        event_data = payload["event"]["data"]

        # Check if the event type is "commit_create"
        if "type" in event_data and event_data["type"] == "commit_create":
            # Check if the stream name matches the specified list
            if "stream" in event_data and event_data["stream"] in listendStreams:
                # Check if the branch name matches the specified list
                if "commit" in event_data and "branchName" in event_data["commit"]:
                    if event_data["commit"]["branchName"] in listendBranchNames:
                        should_continue = True
                else:
                    print("Branch name not found in payload.")
            else:
                print("Stream name not found or not in the specified list.")
        else:
            print("Event type is not 'commit_create'.")
    else:
        print("Payload structure does not match the expected format.")

    # If the flag is True, continue running the main part of the code
    if should_continue:
        # Your main code logic goes here
        runAll()
    else:
        print("Flag is False. Skipping further execution.")

    return "Webhook processing complete."
   
    

def runAll():
     # get config file:# Parse JSON
    
    speckle_token = os.environ.get("SPECKLE_TOKEN")

    



    xls_file_path = os.path.join(current_directory, XLS_FILE_PATH)
    print("full path", xls_file_path)
    # fetch speckle data
    CLIENT = SpeckleClient(host="https://speckle.xyz/")
    CLIENT.authenticate_with_token(token="52566d1047b881764e16ad238356abeb2fc35d8b42")

    # get land use stream
    stream_land_use = speckle_utils.getSpeckleStream(STREAM_ID,
                                            BRANCH_NAME_LAND_USES,
                                            CLIENT,
                                            commit_id = "")
    # navigate to list with speckle objects of interest
    stream_data = stream_land_use["@Data"]["@{0}"]

    # transform stream_data to dataframe (create a backup copy of this dataframe)
    df_speckle_lu = speckle_utils.get_dataframe(stream_data, return_original_df=False)
    df_main = df_speckle_lu.copy()

    # set index column
    df_main =  df_main.set_index("ids", drop=False)


    # get distance matrix stream
    stream_distance_matrice = speckle_utils.getSpeckleStream(STREAM_ID,
                                            BRANCH_NAME_DISTANCE_MATRIX,
                                            CLIENT,
                                            commit_id = "")

    # navigate to list with speckle objects of interest
    distance_matrices = {}
    for distM in stream_distance_matrice["@Data"]['@{0}']:
        for kk in distM.__dict__.keys():
            try:
                if kk.split("+")[1].startswith("distance_matrix"):
                    distance_matrix_dict = json.loads(distM[kk])
                    origin_ids = distance_matrix_dict["origin_uuid"]
                    destination_ids = distance_matrix_dict["destination_uuid"]
                    distance_matrix =  distance_matrix_dict["matrix"]
                    # Convert the distance matrix to a DataFrame
                    df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids)

                    # i want to add the index & colum names to dist_m_csv
                    #distance_matrices[kk]  = dist_m_csv[kk]
                    distance_matrices[kk] = df_distances

            except:
                pass


    # get metric matrix stream
    stream_metric_matrice = speckle_utils.getSpeckleStream(STREAM_ID,
                                            BRANCH_NAME_METRIC_DIST_MATRIX,
                                            CLIENT,
                                            commit_id = "")


    # navigate to list with speckle objects of interest
    metric_matrices = {}
    for distM in stream_metric_matrice["@Data"]['@{0}']:
        print(distM.__dict__.keys())
        for kk in distM.__dict__.keys():
            try:
                if kk.split("+")[1].startswith("metric_matrix"):
                    metric_matrix_dict = json.loads(distM[kk])
                    origin_ids = metric_matrix_dict["origin_uuid"]
                    destination_ids = metric_matrix_dict["destination_uuid"]
                    metric_matrix =  metric_matrix_dict["matrix"]
                    # Convert the distance matrix to a DataFrame
                    df_metric_dist = pd.DataFrame(metric_matrix, index=origin_ids, columns=destination_ids)
                    metric_matrices[kk] = df_metric_dist*10 #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                    print("metric_matrix_dict", metric_matrix_dict.keys())
            except:
                pass

    metric_matrices =  extract_distance_matrices(stream_metric_matrice, metric_matrices_of_interest)


    sourceCommits = {
    "landuseCommitID": stream_land_use.id,
        "distanceMatrixCommitID": stream_distance_matrice.id,
        "metricMatrixCommitID": stream_metric_matrice.id
    }


    # READ XLS FILE ======================================
    # Read Excel file into Pandas DataFrame
    #Production
    # Load Excel file separately
    #xls_file_path = os.path.join(current_directory, XLS_FILE_PATH)
    if os.path.exists(xls_file_path):
        # Production
        df_production = pd.read_excel(xls_file_path, sheet_name='Production')
        df_production_transposed = df_production.T
        df_production = preprocess_dataFrame(df_production, headerRow_idx=2, numRowsStart_idx=3)
        df_production_transposed = preprocess_dataFrame(df_production_transposed, headerRow_idx=0, numRowsStart_idx=4,
                                                    numColsStart_idx=4, rowNames_idx=2)

        # Attraction
        df_attraction = pd.read_excel(xls_file_path, sheet_name='Attraction')
        df_attraction = preprocess_dataFrame(df_attraction, headerRow_idx=0, numRowsStart_idx=2)

        # Distribution_Matrix
        df_distributionMatrix = pd.read_excel(xls_file_path, sheet_name='Distribution_Matrix')
        df_distributionMatrix = preprocess_dataFrame(df_distributionMatrix, headerRow_idx=0, numRowsStart_idx=2,
                                                    numRowsEnd_idx=None, numColsStart_idx=2, numColsEnd_idx=None,
                                                    rowNames_idx=0)

        # Alphas
        df_alphas = pd.read_excel(xls_file_path, sheet_name='Alphas')
        df_alphas.columns = df_alphas.iloc[1]
        df_alphas = df_alphas.iloc[0, 2:]

        # Land use
        df_lu = pd.read_excel(xls_file_path, sheet_name='Example_Land_Use')
        df_lu = preprocess_dataFrame(df_lu, headerRow_idx=0, numRowsStart_idx=1)
        df_lu["nameCombined"] = df_lu.iloc[:, 1].astype(str) + "+" + df_lu.iloc[:, 0].astype(str)

        # Distance Matrix
        df_distMatrix = pd.read_excel(xls_file_path, sheet_name='Example_Distance_Matrix')
        df_distMatrix = preprocess_dataFrame(df_distMatrix, headerRow_idx=0, numRowsStart_idx=1, numRowsEnd_idx=None,
                                            numColsStart_idx=1, numColsEnd_idx=None, rowNames_idx=0)
    else:
        print("Error: Excel file specified in config.json not found.")



    # Land use strucutre =======
    # THIS IS THE DISTANCE MATRIX THATS USED DOWN THE ROAD
    df_distances_aligned, df_lu_stream_aligned = align_dataframes(distance_matrices[distanceMatrixName], df_main, 'ids')

    #Create a df with lanuses
    lu_cols = [col for col in df_lu_stream_aligned.columns if col.startswith("lu+")]
    df_lu_stream = df_lu_stream_aligned[lu_cols]

    # Remove "lu+" from the beginning of column names
    df_lu_stream.columns = df_lu_stream.columns.str.lstrip('lu+')
    df_lu_stream = df_lu_stream.T

    df_lu_stream_t = df_lu_stream.T

    df_lu_stream_with_nameLu_column = df_lu_stream.reset_index(drop=False).rename(columns={'index': 'nameLu'})

    #---
    df_lu_names_xlsx = pd.concat([df_lu.iloc[:, 0:2], df_lu.iloc[:, -1]], axis=1)
    df_lu_names_xlsx.index = df_lu_names_xlsx.iloc[:, 1]
    column_names = ['nameTripType', 'nameLu', 'nameCombined']
    df_lu_names_xlsx.columns = column_names
    print(f"df_lu_names_xlsx shape: {df_lu_names_xlsx.shape}")
    df_lu_names_xlsx.head()

    #--

    # Merge DataFrames using an outer join
    merged_df = pd.merge(df_lu_stream_with_nameLu_column, df_lu_names_xlsx, on='nameLu', how='outer')

    # Get the unique names and their counts from df_lu_names_xlsx
    name_counts = df_lu_names_xlsx['nameLu'].value_counts()
    #print(name_counts)

    # Identify names in df_lu_stream_with_nameLu_column that are not in df_lu_names_xlsx
    missing_names = df_lu_stream_with_nameLu_column.loc[~df_lu_stream_with_nameLu_column['nameLu'].isin(df_lu_names_xlsx['nameLu'])]

    # Append missing rows to df_lu_stream_with_nameLu_column
    df_lu_stream_duplicated = pd.concat([merged_df, missing_names], ignore_index=True)


    #--
    # Find names in df_lu_names_xlsx that are not in df_lu_stream_with_nameLu_column
    missing_names = df_lu_names_xlsx.loc[~df_lu_names_xlsx['nameLu'].isin(df_lu_stream_with_nameLu_column['nameLu'])]

    #--
    # print existing names (?)
    df_lu_names_sorted = df_lu_names_xlsx.sort_values(by='nameLu')
    df_lu_stream_duplicated_sorted = df_lu_stream_duplicated.sort_values(by='nameLu')
    #--
    # Merge DataFrames to get the order of names
    merged_order = pd.merge(df_lu_names_xlsx[['nameCombined']], df_lu_stream_duplicated[['nameCombined']], on='nameCombined', how='inner')

    # Sort df_lu_stream_duplicated based on the order of names in df_lu_names_xlsx
    df_lu_stream_sorted = df_lu_stream_duplicated.sort_values(by='nameCombined', key=lambda x: pd.Categorical(x, categories=merged_order['nameCombined'], ordered=True))

    # Reorganize columns
    column_order = ['nameTripType', 'nameCombined'] + [col for col in df_lu_stream_sorted.columns if col not in ['nameTripType', 'nameCombined']]

    # Create a new DataFrame with the desired column order
    df_lu_stream_reordered = df_lu_stream_sorted[column_order]

    df_lu_stream_reordered_t = df_lu_stream_reordered.T

    #--
    df_lu_stream_with_index = df_lu_stream_reordered_t.reset_index(drop=False).rename(columns={'index': 'ids'})
    df_lu_stream_with_index.index = df_lu_stream_reordered_t.index

    df_lu_num_t_index = df_lu_stream_with_index.iloc[3:]

    df_distances_aligned_index = df_distances_aligned.reset_index(drop=False).rename(columns={'index': 'ids'})
    df_distances_aligned_index.index = df_distances_aligned.index

    df_lu_namesCombined = df_lu_stream_with_index.loc["nameCombined"].iloc[1:]

    # Sort df_lu_stream_with_index based on the 'ids' column in df_distances_aligned_index
    df_lu_stream_sorted = df_lu_stream_with_index.sort_values(by=['ids'], key=lambda x: pd.Categorical(x, categories=df_distances_aligned_index['ids'], ordered=True))


    df_lu_num = df_lu_stream_sorted.T.iloc[1:, :-3]
    df_lu_num.index = df_lu_namesCombined

    df_distMatrix_speckle = df_distances_aligned

    df_attraction_num = df_attraction.reset_index().iloc[:-1, 6:]

    # =============================================================================
    # TRIP GENERATION

    # ATTRACTION & PRODUCTION ======================================================
    """
    INPUTS
    df_attraction_num
    df_lu_num
    df_production
    df_lu
    df_production_transposed
    """

    df_attraction_proNode_sum_total = attraction_proNode_full_iter(df_attraction_num, df_lu_num, True)

    #Get the sqmProPerson
    df_sqmProPerson = df_production.iloc[0, 4:].reset_index()[3]

    #Get the trip rate
    df_tripRate = copy.deepcopy(df_production) # create a copy ensures df_tripRate doenst point to df_production
    df_tripRate.index = df_tripRate.iloc[:, 0] #Set the row names
    df_tripRate = df_tripRate.iloc[1:, 2]

    #Numerical df from production ==============================================
    df_production_num = df_production.iloc[1:, 4:]
    df_production_transposed1 = df_production_num.T

    df_total_trips_allNodes = production_proNode_total(df_lu,
                                                    df_sqmProPerson,
                                                    df_tripRate,
                                                    df_production_num,
                                                    df_production_transposed,
                                                    df_lu_num, printSteps=False)
    # Convert data types to float
    df_total_trips_allNodes = df_total_trips_allNodes.astype(float)
    df_tripRate = df_tripRate.astype(float)

    df_total_trips_allNodes_sumPerson = df_total_trips_allNodes.div(df_tripRate, axis=0).sum()
    df_total_trips_allNodes_sumPerson_proCat = df_total_trips_allNodes.div(df_tripRate, axis=0)
    df_total_trips_allNodes_sumPerson_proCat_t = df_total_trips_allNodes_sumPerson_proCat.T
    df_total_trips_allNodes_sumPerson_proCat_t_sum = df_total_trips_allNodes_sumPerson_proCat_t.sum()

    # get total population
    total_population = df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_Res"] + df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_tou"]



    # =============================================================================
    distance_matrices = extract_distance_matrices(stream_distance_matrice, distance_matrices_of_interest)
    metric_matrices_ = extract_distance_matrices(stream_metric_matrice, metric_matrices_of_interest)
    metric_matrices = { k:v*10 for k, v in metric_matrices_.items()} # scale (speckle issue)

    logs  = computeTrips(
        df_distributionMatrix,
        df_total_trips_allNodes,
        df_distMatrix_speckle,
        df_alphas,
        df_attraction_proNode_sum_total,
        df_distances_aligned,
        TARGET_TRIP_RATE,
        SCALING_FACTOR,
        total_population,
        df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_Res"],
        df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_tou"],
        distance_matrices,
        metric_matrices,
        redistributeTrips,
        DISTANCE_BRACKETS,
        ALPHA_LOW, ALPHA_MED, ALPHA_HIGH, ALPHA, ALPHA_UNIFORM, F_VALUES_MANUAL,
        CLIENT, 
        STREAM_ID, 
        TARGET_BRANCH_TM,
        sourceCommits
        )

    print(logs)