Spaces:
Sleeping
Sleeping
File size: 6,837 Bytes
f6d873c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import spaces
from diffusers import (
StableDiffusionXLPipeline,
EulerDiscreteScheduler,
UNet2DConditionModel,
AutoencoderTiny,
)
import torch
import os
from huggingface_hub import hf_hub_download
from PIL import Image
import gradio as gr
import time
from safetensors.torch import load_file
import time
import tempfile
from pathlib import Path
# Constants
BASE = "stabilityai/stable-diffusion-xl-base-1.0"
REPO = "ByteDance/SDXL-Lightning"
# 1-step
CHECKPOINT = "sdxl_lightning_2step_unet.safetensors"
taesd_model = "madebyollin/taesdxl"
# {
# "1-Step": ["sdxl_lightning_1step_unet_x0.safetensors", 1],
# "2-Step": ["sdxl_lightning_2step_unet.safetensors", 2],
# "4-Step": ["sdxl_lightning_4step_unet.safetensors", 4],
# "8-Step": ["sdxl_lightning_8step_unet.safetensors", 8],
# }
SFAST_COMPILE = os.environ.get("SFAST_COMPILE", "0") == "1"
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
USE_TAESD = os.environ.get("USE_TAESD", "0") == "1"
# check if MPS is available OSX only M1/M2/M3 chips
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_device = device
torch_dtype = torch.float16
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"SFAST_COMPILE: {SFAST_COMPILE}")
print(f"USE_TAESD: {USE_TAESD}")
print(f"device: {device}")
unet = UNet2DConditionModel.from_config(BASE, subfolder="unet")
# .to( "cuda", torch.float16)
# unet.load_state_dict(load_file(hf_hub_download(REPO, CHECKPOINT), device="cuda"))
unet.load_state_dict(load_file(hf_hub_download(REPO, CHECKPOINT)))
pipe = StableDiffusionXLPipeline.from_pretrained(
BASE, unet=unet, torch_dtype=torch.float16, variant="fp16", safety_checker=False
)
# .to("cuda")
unet = unet.to(dtype=torch.float16)
if USE_TAESD:
pipe.vae = AutoencoderTiny.from_pretrained(
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
).to(device)
# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing"
)
pipe.set_progress_bar_config(disable=True)
if SAFETY_CHECKER:
from safety_checker import StableDiffusionSafetyChecker
from transformers import CLIPFeatureExtractor
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
).to(device)
feature_extractor = CLIPFeatureExtractor.from_pretrained(
"openai/clip-vit-base-patch32"
)
def check_nsfw_images(
images: list[Image.Image],
) -> tuple[list[Image.Image], list[bool]]:
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
has_nsfw_concepts = safety_checker(
images=[images],
clip_input=safety_checker_input.pixel_values.to(torch_device),
)
return images, has_nsfw_concepts
if SFAST_COMPILE:
from sfast.compilers.diffusion_pipeline_compiler import compile, CompilationConfig
# sfast compilation
config = CompilationConfig.Default()
try:
import xformers
config.enable_xformers = True
except ImportError:
print("xformers not installed, skip")
try:
import triton
config.enable_triton = True
except ImportError:
print("Triton not installed, skip")
# CUDA Graph is suggested for small batch sizes and small resolutions to reduce CPU overhead.
# But it can increase the amount of GPU memory used.
# For StableVideoDiffusionPipeline it is not needed.
config.enable_cuda_graph = True
pipe = compile(pipe, config)
@spaces.GPU
def predict(prompt, seed=1231231):
generator = torch.manual_seed(seed)
last_time = time.time()
results = pipe(
prompt=prompt,
generator=generator,
num_inference_steps=2,
guidance_scale=0.0,
# width=768,
# height=768,
output_type="pil",
)
print(f"Pipe took {time.time() - last_time} seconds")
if SAFETY_CHECKER:
images, has_nsfw_concepts = check_nsfw_images(results.images)
if any(has_nsfw_concepts):
gr.Warning("NSFW content detected.")
return Image.new("RGB", (512, 512))
image = results.images[0]
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmpfile:
image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True)
return Path(tmpfile.name)
css = """
#container{
margin: 0 auto;
max-width: 40rem;
}
#intro{
max-width: 100%;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
gr.Markdown(
"""
# SDXL-Lightning- Text To Image 2-Steps
**Model**: https://huggingface.co/ByteDance/SDXL-Lightning
""",
elem_id="intro",
)
with gr.Row():
with gr.Row():
prompt = gr.Textbox(
placeholder="Insert your prompt here:", scale=5, container=False
)
generate_bt = gr.Button("Generate", scale=1)
image = gr.Image(type="filepath")
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
)
with gr.Accordion("Run with diffusers"):
gr.Markdown(
"""## Running SDXL-Lightning with `diffusers`
```py
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_2step_unet.safetensors" # Use the correct ckpt for your step setting!
# Load model.
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# Ensure using the same inference steps as the loaded model and CFG set to 0.
pipe("A girl smiling", num_inference_steps=2, guidance_scale=0).images[0].save("output.png")
```
"""
)
inputs = [prompt, seed]
outputs = [image]
generate_bt.click(
fn=predict, inputs=inputs, outputs=outputs, show_progress=False
)
prompt.input(fn=predict, inputs=inputs, outputs=outputs, show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=outputs, show_progress=False)
demo.queue()
demo.launch()
|