File size: 12,247 Bytes
542285e
23097b5
 
 
 
 
 
 
 
 
 
542285e
 
23097b5
 
 
 
 
 
 
 
 
 
480c4d5
23097b5
480c4d5
68fe85e
 
 
 
 
 
d9762c0
 
 
d51b983
23097b5
480c4d5
 
 
 
 
 
 
430ab8a
23097b5
d51b983
480c4d5
 
426b117
480c4d5
 
 
 
 
23097b5
426b117
 
 
 
 
23097b5
426b117
23097b5
426b117
23097b5
 
 
 
 
 
426b117
23097b5
 
 
426b117
23097b5
426b117
23097b5
 
 
 
 
 
 
 
 
 
 
1d5f06c
426b117
 
 
 
23097b5
1d5f06c
f3141ca
20b319d
1d5f06c
426b117
 
 
480c4d5
426b117
480c4d5
 
 
 
 
 
 
 
 
 
 
1d5f06c
480c4d5
426b117
 
 
 
 
 
 
 
 
 
 
 
 
4e18fb4
23097b5
4e18fb4
23097b5
4e18fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
23097b5
 
 
d26f33a
480c4d5
 
 
4e18fb4
23097b5
480c4d5
23097b5
 
 
7758b50
0d1d8fa
 
 
23097b5
 
 
dd1e68b
1a34b46
 
 
 
1d5f06c
1a34b46
 
 
 
 
1d5f06c
1a34b46
 
1d5f06c
1a34b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f06c
1a34b46
 
 
 
 
 
 
 
 
 
 
 
 
1d5f06c
1a34b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e18fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835c130
 
 
 
a6e1e4f
835c130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e18fb4
 
d9428b7
4e18fb4
d9428b7
9a0b27c
23097b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import dash
from dash import Dash, html, dcc, callback, Output, Input
import plotly.express as px
from app import app
import pandas as pd

import datetime
import requests
from io import StringIO
from datetime import date

# from jupyter_dash import JupyterDash
# from dash.dependencies import Input, Output
import dash_bootstrap_components as dbc
import plotly.express as px

server = app.server

url='https://drive.google.com/file/d/1NaXOYHQFF5UO5rQr4rn8Lr3bkYMSOq4_/view?usp=sharing'
url='https://drive.google.com/uc?id=' + url.split('/')[-2]

# reading of file
df = pd.read_csv(url)

df['date'] = pd.to_datetime(df['date'])

unique_domains = df['domain_folder_name'].unique()
print(unique_domains)

unique_topics = df['Topic'].unique()
print(unique_topics)

#copying a column 
df["Veículos de notícias"] = df["domain_folder_name"]

# df = df.rename(columns={df.columns[4]: "Veículos de notícias"})

df['FinBERT_label'] = df['FinBERT_label'].astype(str)
df['FinBERT_label'].replace({
    '3.0': 'positive',
    '2.0': 'neutral',
    '1.0': 'negative'
}, inplace=True)



counts = df.groupby(['date', 'Topic', 'domain_folder_name', 'FinBERT_label']).size().reset_index(name='count')
counts['count'] = counts['count'].astype('float64')
counts['rolling_mean_counts'] = counts['count'].rolling(window=30, min_periods=2).mean()

df_pos = counts[[x in ['positive'] for x in counts.FinBERT_label]]
df_neu = counts[[x in ['neutral'] for x in counts.FinBERT_label]]
df_neg = counts[[x in ['negative'] for x in counts.FinBERT_label]]



app.layout = dbc.Container([   
    dbc.Row([ # row 1
        dbc.Col([html.H1('Evolução temporal de sentimento em títulos de notícias')],
        className="text-center mt-3 mb-1")]),
    
    dbc.Row([ # row 2
        dbc.Label("Selecione um período (mm/dd/aaaa):", className="fw-bold")]),

    dbc.Row([ # row 3
        dcc.DatePickerRange(
            id='date-range',
            min_date_allowed=df['date'].min().date(),
            max_date_allowed=df['date'].max().date(),
            initial_visible_month=df['date'].min().date(),
            start_date=df['date'].min().date(),
            end_date=df['date'].max().date())]),

    dbc.Row([ # row 4
        dbc.Label("Escolha um tópico:", className="fw-bold")
    ]),

    dbc.Row([ # row 5
        dbc.Col(
            dcc.Dropdown(
                id="topic-selector",
                options=[
                    {"label": topic, "value": topic} for topic in unique_topics
                ],
                value="Imigrantes",  # Set the initial value
                style={"width": "50%"})


        )
    ]),
    
    dbc.Row([ # row 6
            dbc.Col(dcc.Graph(id='line-graph-1'))
    ]),

    dbc.Row([ # row 7 but needs to be updated
        dbc.Col(dcc.Graph(id="bar-graph-1"))
    ]),

    dbc.Row([ # row 7
            dbc.Label("Escolha um site de notícias:", className="fw-bold")
    ]),

    dbc.Row([ # row 8
        dbc.Col(
            dcc.Dropdown(
                id="domain-selector",
                options=[
                    {"label": domain, "value": domain} for domain in unique_domains
                ],
                value="expresso-pt",  # Set the initial value
                style={"width": "50%"})


        )
    ]),

    dbc.Row([ # row 9
            dbc.Col(dcc.Graph(id='line-graph-2'),
                    )
    ]),

    dbc.Row([ # row 10
            dbc.Col(dcc.Graph(id='line-graph-3'),
                    )
    ]),
    
    dbc.Row([ # row 11
            dbc.Col(dcc.Graph(id='line-graph-4'),
                    )
    ]),

    html.Div(id='pie-container-1')

])
# # Create a function to generate pie charts
# def generate_pie_chart(category):
#     labels = data[category]['labels']
#     values = data[category]['values']
#     trace = go.Pie(labels=labels, values=values)
#     layout = go.Layout(title=f'Pie Chart - {category}')
#     return dcc.Graph(
#         figure={
#             'data': [trace],
#             'layout': layout
#         }
#     )
    
# callback decorator
@app.callback(
    Output('line-graph-1', 'figure'),
    Output('bar-graph-1','figure'),
    Output('line-graph-2', 'figure'),
    Output('line-graph-3', 'figure'),
    Output('line-graph-4', 'figure'),
    Output('pie-container-1', 'children'),
    Input("topic-selector", "value"),
    Input ("domain-selector", "value"),
    Input('date-range', 'start_date'),
    Input('date-range', 'end_date')
)
def update_output(selected_topic, selected_domain, start_date, end_date):
    #log
    print("topic",selected_topic,"domain",selected_domain,"start", start_date,"date", end_date)
    
    # filter dataframes based on updated data range
    mask_1 = ((df["Topic"] == selected_topic) & (df['date'] >= start_date) & (df['date'] <= end_date))
    df_filtered = df.loc[mask_1]
    print(df_filtered.shape)
    if len(df_filtered)>0:
        #create line graphs based on filtered dataframes
        line_fig_1 = px.line(df_filtered, x="date", y="normalised results",
                         color='Veículos de notícias', title="O gráfico mostra a evolução temporal de sentimento dos títulos de notícias. Numa escala de -1 (negativo) a 1 (positivo), sendo 0 (neutro).")
    
        # Veículos de notícias
        #set x-axis title and y-axis title in line graphs
        line_fig_1.update_layout(
                       xaxis_title='Data',
                       yaxis_title='Classificação de Sentimento')
    
        #set label format on y-axis in line graphs
        line_fig_1.update_xaxes(tickformat="%b %d<br>%Y")
    
        # Bar Graph start
        grouped_df = df_filtered.groupby(['date', 'Veículos de notícias']).size().reset_index(name='occurrences')
        
        # Sort DataFrame by 'period' column
        grouped_df = grouped_df.sort_values(by='date')
        
        # Create a list of all unique media
        all_media = df_filtered['domain_folder_name'].unique()
        
        # Create a date range from Jan/2000 to the last month in the dataset
        date_range = pd.date_range(start=df_filtered['date'].min().date(), end=df_filtered['date'].max().date(), freq='MS')
        
        # Create a MultiIndex with all combinations of date_range and all_media
        idx = pd.MultiIndex.from_product([date_range, all_media], names=['date', 'Veículos de notícias'])
        
        # Reindex the DataFrame to include all periods and media
        grouped_df = grouped_df.set_index(['date', 'Veículos de notícias']).reindex(idx, fill_value=0).reset_index()
    
        bar_fig_1 = px.bar(grouped_df, x='date', y='occurrences', color='Veículos de notícias',
                 labels={'date': 'Período', 'occurrences': 'Número de notícias', 'Veículos de notícias': 'Portal'},
                 title='Número de notícias por período de tempo')
        bar_fig_1.update_xaxes(tickformat="%b %d<br>%Y")
        # Bar Graph ends
                           
        # filter dataframes based on updated data range
        mask_2 = ((df_pos["Topic"] == selected_topic) & (df_pos["domain_folder_name"] == selected_domain) & (df_pos['date'] >= start_date) & (df_pos['date'] <= end_date))
        mask_3 = ((df_neu["Topic"] == selected_topic) & (df_neu["domain_folder_name"] == selected_domain) & (df_neu['date'] >= start_date) & (df_neu['date'] <= end_date))
        mask_4 = ((df_neg["Topic"] == selected_topic) & (df_neg["domain_folder_name"] == selected_domain) & (df_neg['date'] >= start_date) & (df_neg['date'] <= end_date))
        df2_filtered = df_pos.loc[mask_2]
        df3_filtered = df_neu.loc[mask_3]
        df4_filtered = df_neg.loc[mask_4]
    
    #create line graphs based on filtered dataframes
        line_fig_2 = px.line(df2_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label",
                         title="Positive")
        line_fig_3 = px.line(df3_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label",
                         title="Neutral")
        line_fig_4 = px.line(df4_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label",
                         title="Negative")
    
    #set x-axis title and y-axis title in line graphs
        line_fig_2.update_layout(
                       xaxis_title='Data',
                       yaxis_title='Número de notícias com sentimento positivo')
        line_fig_3.update_layout(
                       xaxis_title='Data',
                       yaxis_title='Número de notícias com sentimento neutro')
        line_fig_4.update_layout(
                       xaxis_title='Data',
                       yaxis_title='Número de notícias com sentimento negativo')
    
    #set label format on y-axis in line graphs
        line_fig_2.update_xaxes(tickformat="%b %d<br>%Y")
        line_fig_3.update_xaxes(tickformat="%b %d<br>%Y")
        line_fig_4.update_xaxes(tickformat="%b %d<br>%Y")
    
    #set label format on y-axis in line graphs
        line_fig_2.update_traces(line_color='#1E88E5')
        line_fig_3.update_traces(line_color='#004D40')
        line_fig_4.update_traces(line_color='#D81B60')

    #
        # pie_container_1 = generate_pie_chart(category)
        # Map original labels to their translated versions
        label_translation = {'positive': 'positivo', 'neutral': 'neutro', 'negative': 'negativo'}
        df_filtered['FinBERT_label_transformed'] = df_filtered['FinBERT_label'].map(label_translation)
        
        # Group by FinBERT_label and count occurrences
        label_counts_all = df_filtered['FinBERT_label_transformed'].value_counts()
        
        # Calculate percentage of each label
        label_percentages_all = (label_counts_all / label_counts_all.sum()) * 100
        
        # Plot general pie chart
        fig_general = px.pie(
            values=label_percentages_all,
            names=label_percentages_all.index,
            title='Distribuição Geral',
            color_discrete_sequence=['#039a4d', '#3c03f4', '#ca3919']
        )
        
        
        # Get unique media categories
        media_categories = df_filtered['Veículos de notícias'].unique()
        
        # Define colors for each label
        label_colors = {'positivo': '#039a4d', 'neutro': '#3c03f4', 'negativo': '#ca3919'}
        
                         
        pie_container_1 = []
        # Loop through each media category
        row_content = []
        for media in media_categories:
            # Filter DataFrame for current media category
            media_df = df_filtered[df_filtered['Veículos de notícias'] == media]
        
            # Group by FinBERT_label and count occurrences
            label_counts = media_df['FinBERT_label_transformed'].value_counts()
        
            # Calculate percentage of each label
            label_percentages = (label_counts / label_counts.sum()) * 100
        
            # Plot pie chart
            fig = px.pie(
                values=label_percentages,
                names=label_percentages.index,
                title=f'Distribuição para {media}',
                color_discrete_sequence=[label_colors[label] for label in label_percentages.index]
            )
            fig = dcc.Graph(figure=fig)
            pie_chart = html.Div(fig,className='four columns')
            row_content.append(pie_chart)
        pie_container_1.append(html.Div(row_content, className='row'))
            
        return line_fig_1, bar_fig_1, line_fig_2, line_fig_3, line_fig_4, pie_container_1
    else:
        return {'data': []},{'data': []} ,{'data': []} ,{'data': []} , {'data': []}, {'data':[]} 
    
    # return line_fig_1
    


# df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')



# app.layout = html.Div([
#     html.H1(children='Title of Dash App', style={'textAlign':'center'}),
#     dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'),
#     dcc.Graph(id='graph-content')
# ])

# @callback(
#     Output('graph-content', 'figure'),
#     Input('dropdown-selection', 'value')
# )
# def update_graph(value):
#     dff = df[df.country==value]
#     return px.line(dff, x='year', y='pop')


if __name__ == '__main__':
    app.run_server(debug=True)