Spaces:
Sleeping
Sleeping
File size: 12,247 Bytes
542285e 23097b5 542285e 23097b5 480c4d5 23097b5 480c4d5 68fe85e d9762c0 d51b983 23097b5 480c4d5 430ab8a 23097b5 d51b983 480c4d5 426b117 480c4d5 23097b5 426b117 23097b5 426b117 23097b5 426b117 23097b5 426b117 23097b5 426b117 23097b5 426b117 23097b5 1d5f06c 426b117 23097b5 1d5f06c f3141ca 20b319d 1d5f06c 426b117 480c4d5 426b117 480c4d5 1d5f06c 480c4d5 426b117 4e18fb4 23097b5 4e18fb4 23097b5 4e18fb4 23097b5 d26f33a 480c4d5 4e18fb4 23097b5 480c4d5 23097b5 7758b50 0d1d8fa 23097b5 dd1e68b 1a34b46 1d5f06c 1a34b46 1d5f06c 1a34b46 1d5f06c 1a34b46 1d5f06c 1a34b46 1d5f06c 1a34b46 4e18fb4 835c130 a6e1e4f 835c130 4e18fb4 d9428b7 4e18fb4 d9428b7 9a0b27c 23097b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import dash
from dash import Dash, html, dcc, callback, Output, Input
import plotly.express as px
from app import app
import pandas as pd
import datetime
import requests
from io import StringIO
from datetime import date
# from jupyter_dash import JupyterDash
# from dash.dependencies import Input, Output
import dash_bootstrap_components as dbc
import plotly.express as px
server = app.server
url='https://drive.google.com/file/d/1NaXOYHQFF5UO5rQr4rn8Lr3bkYMSOq4_/view?usp=sharing'
url='https://drive.google.com/uc?id=' + url.split('/')[-2]
# reading of file
df = pd.read_csv(url)
df['date'] = pd.to_datetime(df['date'])
unique_domains = df['domain_folder_name'].unique()
print(unique_domains)
unique_topics = df['Topic'].unique()
print(unique_topics)
#copying a column
df["Veículos de notícias"] = df["domain_folder_name"]
# df = df.rename(columns={df.columns[4]: "Veículos de notícias"})
df['FinBERT_label'] = df['FinBERT_label'].astype(str)
df['FinBERT_label'].replace({
'3.0': 'positive',
'2.0': 'neutral',
'1.0': 'negative'
}, inplace=True)
counts = df.groupby(['date', 'Topic', 'domain_folder_name', 'FinBERT_label']).size().reset_index(name='count')
counts['count'] = counts['count'].astype('float64')
counts['rolling_mean_counts'] = counts['count'].rolling(window=30, min_periods=2).mean()
df_pos = counts[[x in ['positive'] for x in counts.FinBERT_label]]
df_neu = counts[[x in ['neutral'] for x in counts.FinBERT_label]]
df_neg = counts[[x in ['negative'] for x in counts.FinBERT_label]]
app.layout = dbc.Container([
dbc.Row([ # row 1
dbc.Col([html.H1('Evolução temporal de sentimento em títulos de notícias')],
className="text-center mt-3 mb-1")]),
dbc.Row([ # row 2
dbc.Label("Selecione um período (mm/dd/aaaa):", className="fw-bold")]),
dbc.Row([ # row 3
dcc.DatePickerRange(
id='date-range',
min_date_allowed=df['date'].min().date(),
max_date_allowed=df['date'].max().date(),
initial_visible_month=df['date'].min().date(),
start_date=df['date'].min().date(),
end_date=df['date'].max().date())]),
dbc.Row([ # row 4
dbc.Label("Escolha um tópico:", className="fw-bold")
]),
dbc.Row([ # row 5
dbc.Col(
dcc.Dropdown(
id="topic-selector",
options=[
{"label": topic, "value": topic} for topic in unique_topics
],
value="Imigrantes", # Set the initial value
style={"width": "50%"})
)
]),
dbc.Row([ # row 6
dbc.Col(dcc.Graph(id='line-graph-1'))
]),
dbc.Row([ # row 7 but needs to be updated
dbc.Col(dcc.Graph(id="bar-graph-1"))
]),
dbc.Row([ # row 7
dbc.Label("Escolha um site de notícias:", className="fw-bold")
]),
dbc.Row([ # row 8
dbc.Col(
dcc.Dropdown(
id="domain-selector",
options=[
{"label": domain, "value": domain} for domain in unique_domains
],
value="expresso-pt", # Set the initial value
style={"width": "50%"})
)
]),
dbc.Row([ # row 9
dbc.Col(dcc.Graph(id='line-graph-2'),
)
]),
dbc.Row([ # row 10
dbc.Col(dcc.Graph(id='line-graph-3'),
)
]),
dbc.Row([ # row 11
dbc.Col(dcc.Graph(id='line-graph-4'),
)
]),
html.Div(id='pie-container-1')
])
# # Create a function to generate pie charts
# def generate_pie_chart(category):
# labels = data[category]['labels']
# values = data[category]['values']
# trace = go.Pie(labels=labels, values=values)
# layout = go.Layout(title=f'Pie Chart - {category}')
# return dcc.Graph(
# figure={
# 'data': [trace],
# 'layout': layout
# }
# )
# callback decorator
@app.callback(
Output('line-graph-1', 'figure'),
Output('bar-graph-1','figure'),
Output('line-graph-2', 'figure'),
Output('line-graph-3', 'figure'),
Output('line-graph-4', 'figure'),
Output('pie-container-1', 'children'),
Input("topic-selector", "value"),
Input ("domain-selector", "value"),
Input('date-range', 'start_date'),
Input('date-range', 'end_date')
)
def update_output(selected_topic, selected_domain, start_date, end_date):
#log
print("topic",selected_topic,"domain",selected_domain,"start", start_date,"date", end_date)
# filter dataframes based on updated data range
mask_1 = ((df["Topic"] == selected_topic) & (df['date'] >= start_date) & (df['date'] <= end_date))
df_filtered = df.loc[mask_1]
print(df_filtered.shape)
if len(df_filtered)>0:
#create line graphs based on filtered dataframes
line_fig_1 = px.line(df_filtered, x="date", y="normalised results",
color='Veículos de notícias', title="O gráfico mostra a evolução temporal de sentimento dos títulos de notícias. Numa escala de -1 (negativo) a 1 (positivo), sendo 0 (neutro).")
# Veículos de notícias
#set x-axis title and y-axis title in line graphs
line_fig_1.update_layout(
xaxis_title='Data',
yaxis_title='Classificação de Sentimento')
#set label format on y-axis in line graphs
line_fig_1.update_xaxes(tickformat="%b %d<br>%Y")
# Bar Graph start
grouped_df = df_filtered.groupby(['date', 'Veículos de notícias']).size().reset_index(name='occurrences')
# Sort DataFrame by 'period' column
grouped_df = grouped_df.sort_values(by='date')
# Create a list of all unique media
all_media = df_filtered['domain_folder_name'].unique()
# Create a date range from Jan/2000 to the last month in the dataset
date_range = pd.date_range(start=df_filtered['date'].min().date(), end=df_filtered['date'].max().date(), freq='MS')
# Create a MultiIndex with all combinations of date_range and all_media
idx = pd.MultiIndex.from_product([date_range, all_media], names=['date', 'Veículos de notícias'])
# Reindex the DataFrame to include all periods and media
grouped_df = grouped_df.set_index(['date', 'Veículos de notícias']).reindex(idx, fill_value=0).reset_index()
bar_fig_1 = px.bar(grouped_df, x='date', y='occurrences', color='Veículos de notícias',
labels={'date': 'Período', 'occurrences': 'Número de notícias', 'Veículos de notícias': 'Portal'},
title='Número de notícias por período de tempo')
bar_fig_1.update_xaxes(tickformat="%b %d<br>%Y")
# Bar Graph ends
# filter dataframes based on updated data range
mask_2 = ((df_pos["Topic"] == selected_topic) & (df_pos["domain_folder_name"] == selected_domain) & (df_pos['date'] >= start_date) & (df_pos['date'] <= end_date))
mask_3 = ((df_neu["Topic"] == selected_topic) & (df_neu["domain_folder_name"] == selected_domain) & (df_neu['date'] >= start_date) & (df_neu['date'] <= end_date))
mask_4 = ((df_neg["Topic"] == selected_topic) & (df_neg["domain_folder_name"] == selected_domain) & (df_neg['date'] >= start_date) & (df_neg['date'] <= end_date))
df2_filtered = df_pos.loc[mask_2]
df3_filtered = df_neu.loc[mask_3]
df4_filtered = df_neg.loc[mask_4]
#create line graphs based on filtered dataframes
line_fig_2 = px.line(df2_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label",
title="Positive")
line_fig_3 = px.line(df3_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label",
title="Neutral")
line_fig_4 = px.line(df4_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label",
title="Negative")
#set x-axis title and y-axis title in line graphs
line_fig_2.update_layout(
xaxis_title='Data',
yaxis_title='Número de notícias com sentimento positivo')
line_fig_3.update_layout(
xaxis_title='Data',
yaxis_title='Número de notícias com sentimento neutro')
line_fig_4.update_layout(
xaxis_title='Data',
yaxis_title='Número de notícias com sentimento negativo')
#set label format on y-axis in line graphs
line_fig_2.update_xaxes(tickformat="%b %d<br>%Y")
line_fig_3.update_xaxes(tickformat="%b %d<br>%Y")
line_fig_4.update_xaxes(tickformat="%b %d<br>%Y")
#set label format on y-axis in line graphs
line_fig_2.update_traces(line_color='#1E88E5')
line_fig_3.update_traces(line_color='#004D40')
line_fig_4.update_traces(line_color='#D81B60')
#
# pie_container_1 = generate_pie_chart(category)
# Map original labels to their translated versions
label_translation = {'positive': 'positivo', 'neutral': 'neutro', 'negative': 'negativo'}
df_filtered['FinBERT_label_transformed'] = df_filtered['FinBERT_label'].map(label_translation)
# Group by FinBERT_label and count occurrences
label_counts_all = df_filtered['FinBERT_label_transformed'].value_counts()
# Calculate percentage of each label
label_percentages_all = (label_counts_all / label_counts_all.sum()) * 100
# Plot general pie chart
fig_general = px.pie(
values=label_percentages_all,
names=label_percentages_all.index,
title='Distribuição Geral',
color_discrete_sequence=['#039a4d', '#3c03f4', '#ca3919']
)
# Get unique media categories
media_categories = df_filtered['Veículos de notícias'].unique()
# Define colors for each label
label_colors = {'positivo': '#039a4d', 'neutro': '#3c03f4', 'negativo': '#ca3919'}
pie_container_1 = []
# Loop through each media category
row_content = []
for media in media_categories:
# Filter DataFrame for current media category
media_df = df_filtered[df_filtered['Veículos de notícias'] == media]
# Group by FinBERT_label and count occurrences
label_counts = media_df['FinBERT_label_transformed'].value_counts()
# Calculate percentage of each label
label_percentages = (label_counts / label_counts.sum()) * 100
# Plot pie chart
fig = px.pie(
values=label_percentages,
names=label_percentages.index,
title=f'Distribuição para {media}',
color_discrete_sequence=[label_colors[label] for label in label_percentages.index]
)
fig = dcc.Graph(figure=fig)
pie_chart = html.Div(fig,className='four columns')
row_content.append(pie_chart)
pie_container_1.append(html.Div(row_content, className='row'))
return line_fig_1, bar_fig_1, line_fig_2, line_fig_3, line_fig_4, pie_container_1
else:
return {'data': []},{'data': []} ,{'data': []} ,{'data': []} , {'data': []}, {'data':[]}
# return line_fig_1
# df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')
# app.layout = html.Div([
# html.H1(children='Title of Dash App', style={'textAlign':'center'}),
# dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'),
# dcc.Graph(id='graph-content')
# ])
# @callback(
# Output('graph-content', 'figure'),
# Input('dropdown-selection', 'value')
# )
# def update_graph(value):
# dff = df[df.country==value]
# return px.line(dff, x='year', y='pop')
if __name__ == '__main__':
app.run_server(debug=True)
|