Spaces:
Runtime error
Runtime error
File size: 14,750 Bytes
1bb1365 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# --------------------------------------------------------
# Main training function
# --------------------------------------------------------
import argparse
import datetime
import json
import os
import sys
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import utils
import utils.misc as misc
from models.croco_downstream import CroCoDownstreamBinocular, croco_args_from_ckpt
from models.head_downstream import PixelwiseTaskWithDPT
from models.pos_embed import interpolate_pos_embed
from stereoflow.criterion import *
from stereoflow.datasets_flow import get_test_datasets_flow, get_train_dataset_flow
from stereoflow.datasets_stereo import (
get_test_datasets_stereo,
get_train_dataset_stereo,
)
from stereoflow.engine import train_one_epoch, validate_one_epoch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from utils.misc import NativeScalerWithGradNormCount as NativeScaler
def get_args_parser():
# prepare subparsers
parser = argparse.ArgumentParser(
"Finetuning CroCo models on stereo or flow", add_help=False
)
subparsers = parser.add_subparsers(
title="Task (stereo or flow)", dest="task", required=True
)
parser_stereo = subparsers.add_parser("stereo", help="Training stereo model")
parser_flow = subparsers.add_parser("flow", help="Training flow model")
def add_arg(
name_or_flags, default=None, default_stereo=None, default_flow=None, **kwargs
):
if default is not None:
assert (
default_stereo is None and default_flow is None
), "setting default makes default_stereo and default_flow disabled"
parser_stereo.add_argument(
name_or_flags,
default=default if default is not None else default_stereo,
**kwargs,
)
parser_flow.add_argument(
name_or_flags,
default=default if default is not None else default_flow,
**kwargs,
)
# output dir
add_arg(
"--output_dir",
required=True,
type=str,
help="path where to save, if empty, automatically created",
)
# model
add_arg(
"--crop",
type=int,
nargs="+",
default_stereo=[352, 704],
default_flow=[320, 384],
help="size of the random image crops used during training.",
)
add_arg(
"--pretrained",
required=True,
type=str,
help="Load pretrained model (required as croco arguments come from there)",
)
# criterion
add_arg(
"--criterion",
default_stereo="LaplacianLossBounded2()",
default_flow="LaplacianLossBounded()",
type=str,
help="string to evaluate to get criterion",
)
add_arg("--bestmetric", default_stereo="avgerr", default_flow="EPE", type=str)
# dataset
add_arg("--dataset", type=str, required=True, help="training set")
# training
add_arg("--seed", default=0, type=int, help="seed")
add_arg(
"--batch_size",
default_stereo=6,
default_flow=8,
type=int,
help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus",
)
add_arg("--epochs", default=32, type=int, help="number of training epochs")
add_arg(
"--img_per_epoch",
type=int,
default=None,
help="Fix the number of images seen in an epoch (None means use all training pairs)",
)
add_arg(
"--accum_iter",
default=1,
type=int,
help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)",
)
add_arg(
"--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)"
)
add_arg(
"--lr",
type=float,
default_stereo=3e-5,
default_flow=2e-5,
metavar="LR",
help="learning rate (absolute lr)",
)
add_arg(
"--min_lr",
type=float,
default=0.0,
metavar="LR",
help="lower lr bound for cyclic schedulers that hit 0",
)
add_arg(
"--warmup_epochs", type=int, default=1, metavar="N", help="epochs to warmup LR"
)
add_arg(
"--optimizer",
default="AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))",
type=str,
help="Optimizer from torch.optim [ default: AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) ]",
)
add_arg(
"--amp",
default=0,
type=int,
choices=[0, 1],
help="enable automatic mixed precision training",
)
# validation
add_arg(
"--val_dataset",
type=str,
default="",
help="Validation sets, multiple separated by + (empty string means that no validation is performed)",
)
add_arg(
"--tile_conf_mode",
type=str,
default_stereo="conf_expsigmoid_15_3",
default_flow="conf_expsigmoid_10_5",
help="Weights for tile aggregation",
)
add_arg(
"--val_overlap", default=0.7, type=float, help="Overlap value for the tiling"
)
# others
add_arg("--num_workers", default=8, type=int)
add_arg("--eval_every", type=int, default=1, help="Val loss evaluation frequency")
add_arg("--save_every", type=int, default=1, help="Save checkpoint frequency")
add_arg(
"--start_from",
type=str,
default=None,
help="Start training using weights from an other model (eg for finetuning)",
)
add_arg(
"--tboard_log_step",
type=int,
default=100,
help="Log to tboard every so many steps",
)
add_arg(
"--dist_url", default="env://", help="url used to set up distributed training"
)
return parser
def main(args):
misc.init_distributed_mode(args)
global_rank = misc.get_rank()
num_tasks = misc.get_world_size()
assert os.path.isfile(args.pretrained)
print("output_dir: " + args.output_dir)
os.makedirs(args.output_dir, exist_ok=True)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# Metrics / criterion
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
metrics = (StereoMetrics if args.task == "stereo" else FlowMetrics)().to(device)
criterion = eval(args.criterion).to(device)
print("Criterion: ", args.criterion)
# Prepare model
assert os.path.isfile(args.pretrained)
ckpt = torch.load(args.pretrained, "cpu")
croco_args = croco_args_from_ckpt(ckpt)
croco_args["img_size"] = (args.crop[0], args.crop[1])
print("Croco args: " + str(croco_args))
args.croco_args = croco_args # saved for test time
# prepare head
num_channels = {"stereo": 1, "flow": 2}[args.task]
if criterion.with_conf:
num_channels += 1
print(f"Building head PixelwiseTaskWithDPT() with {num_channels} channel(s)")
head = PixelwiseTaskWithDPT()
head.num_channels = num_channels
# build model and load pretrained weights
model = CroCoDownstreamBinocular(head, **croco_args)
interpolate_pos_embed(model, ckpt["model"])
msg = model.load_state_dict(ckpt["model"], strict=False)
print(msg)
total_params = sum(p.numel() for p in model.parameters())
total_params_trainable = sum(
p.numel() for p in model.parameters() if p.requires_grad
)
print(f"Total params: {total_params}")
print(f"Total params trainable: {total_params_trainable}")
model_without_ddp = model.to(device)
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
print("lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], static_graph=True
)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay)
optimizer = eval(f"torch.optim.{args.optimizer}")
print(optimizer)
loss_scaler = NativeScaler()
# automatic restart
last_ckpt_fname = os.path.join(args.output_dir, f"checkpoint-last.pth")
args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None
if not args.resume and args.start_from:
print(f"Starting from an other model's weights: {args.start_from}")
best_so_far = None
args.start_epoch = 0
ckpt = torch.load(args.start_from, "cpu")
msg = model_without_ddp.load_state_dict(ckpt["model"], strict=False)
print(msg)
else:
best_so_far = misc.load_model(
args=args,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
)
if best_so_far is None:
best_so_far = np.inf
# tensorboard
log_writer = None
if global_rank == 0 and args.output_dir is not None:
log_writer = SummaryWriter(
log_dir=args.output_dir, purge_step=args.start_epoch * 1000
)
# dataset and loader
print("Building Train Data loader for dataset: ", args.dataset)
train_dataset = (
get_train_dataset_stereo if args.task == "stereo" else get_train_dataset_flow
)(args.dataset, crop_size=args.crop)
def _print_repr_dataset(d):
if isinstance(d, torch.utils.data.dataset.ConcatDataset):
for dd in d.datasets:
_print_repr_dataset(dd)
else:
print(repr(d))
_print_repr_dataset(train_dataset)
print(" total length:", len(train_dataset))
if args.distributed:
sampler_train = torch.utils.data.DistributedSampler(
train_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.RandomSampler(train_dataset)
data_loader_train = torch.utils.data.DataLoader(
train_dataset,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
if args.val_dataset == "":
data_loaders_val = None
else:
print("Building Val Data loader for datasets: ", args.val_dataset)
val_datasets = (
get_test_datasets_stereo
if args.task == "stereo"
else get_test_datasets_flow
)(args.val_dataset)
for val_dataset in val_datasets:
print(repr(val_dataset))
data_loaders_val = [
DataLoader(
val_dataset,
batch_size=1,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
for val_dataset in val_datasets
]
bestmetric = (
"AVG_"
if len(data_loaders_val) > 1
else str(data_loaders_val[0].dataset) + "_"
) + args.bestmetric
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
# Training Loop
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
# Train
epoch_start = time.time()
train_stats = train_one_epoch(
model,
criterion,
metrics,
data_loader_train,
optimizer,
device,
epoch,
loss_scaler,
log_writer=log_writer,
args=args,
)
epoch_time = time.time() - epoch_start
if args.distributed:
dist.barrier()
# Validation (current naive implementation runs the validation on every gpu ... not smart ...)
if (
data_loaders_val is not None
and args.eval_every > 0
and (epoch + 1) % args.eval_every == 0
):
val_epoch_start = time.time()
val_stats = validate_one_epoch(
model,
criterion,
metrics,
data_loaders_val,
device,
epoch,
log_writer=log_writer,
args=args,
)
val_epoch_time = time.time() - val_epoch_start
val_best = val_stats[bestmetric]
# Save best of all
if val_best <= best_so_far:
best_so_far = val_best
misc.save_model(
args=args,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
epoch=epoch,
best_so_far=best_so_far,
fname="best",
)
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
"epoch": epoch,
**{f"val_{k}": v for k, v in val_stats.items()},
}
else:
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
"epoch": epoch,
}
if args.distributed:
dist.barrier()
# Save stuff
if args.output_dir and (
(epoch + 1) % args.save_every == 0 or epoch + 1 == args.epochs
):
misc.save_model(
args=args,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
epoch=epoch,
best_so_far=best_so_far,
fname="last",
)
if args.output_dir:
if log_writer is not None:
log_writer.flush()
with open(
os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8"
) as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
if __name__ == "__main__":
args = get_args_parser()
args = args.parse_args()
main(args)
|