File size: 2,197 Bytes
f9366f8
 
 
 
 
 
 
297db7c
f9366f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
974c6dd
f9366f8
 
 
7564ede
 
f9366f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Pinecone, Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI

OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')

from langchain.document_loaders import DirectoryLoader
pdf_loader = DirectoryLoader('archivos', glob="**/*.pdf")

#Crear loader
loaders = [pdf_loader]

#Crear objeto document
documents = []
for loader in loaders:
    documents.extend(loader.load())

#TEXT SPLITTER

text_splitter = CharacterTextSplitter(chunk_size=3500, chunk_overlap=10)
documents = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()

from langchain.vectorstores import Chroma

vectorstore = Chroma.from_documents(documents, embeddings)

from langchain.llms import OpenAI
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k":2})
qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0.5), retriever)

#GRADIO WIDGET

import gradio as gr

with gr.Blocks() as demo:
    img1 = gr.Image("logo.jpg")
    #img1.css = "max-width: 200px; max-height: 200px; display: block; margin: 0 auto;"
    gr.Markdown(
    """
    # NOMBRE DEL CHATBOT
   Descripción del chatbot
    """)
    msg = gr.Textbox()
    clear = gr.Button("Clear")
    chatbot = gr.Chatbot()
    
    def respond(user_message, chat_history):
        print(user_message)
        # QA chain
        # Convertir Gradio's chat history en el formato LangChain's esperado
        langchain_history = [(msg[1], chat_history[i+1][1] if i+1 < len(chat_history) else "") for i, msg in enumerate(chat_history) if i % 2 == 0]
        response = qa({"question": user_message, "chat_history": langchain_history})
        #response = qa({"question": user_message, "chat_history": chat_history})
        # Crear chat history
        chat_history.append((user_message, response["answer"]))
        print(chat_history)
        return "", chat_history

    msg.submit(respond, [msg, chatbot], [msg, chatbot], queue=False)
    clear.click(lambda: None, None, chatbot, queue=False)

demo.launch(debug=True)