File size: 8,965 Bytes
0745795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Sema Translation API - Complete Documentation

Welcome to the comprehensive documentation for the Sema Translation API - an enterprise-grade translation service supporting 200+ languages with custom HuggingFace models and a focus on African languages.

## ๐Ÿ“š Documentation Overview

This documentation covers all aspects of the Sema Translation API, from custom model implementation to advanced deployment scenarios and future application ideas.

### ๐Ÿš€ Core Documentation

#### **[Custom Models Implementation](CUSTOM_MODELS_IMPLEMENTATION.md)**
**Essential Reading** - Detailed documentation of how we implemented custom HuggingFace models:
- Unified `sematech/sema-utils` repository structure
- CTranslate2 optimization for 2-4x faster inference
- Model loading pipeline and caching strategy
- Performance benchmarks and monitoring
- Model update and versioning process

#### **[API Capabilities](API_CAPABILITIES.md)**
Complete overview of enhanced API features:
- 55+ African languages (updated from 23)
- Server-side performance timing
- Language detection with confidence scores
- Comprehensive language metadata system

#### **[Future Considerations](FUTURE_CONSIDERATIONS.md)**
Roadmap and application ideas:
- Authentication & user management with Supabase
- Database integration and caching strategies
- Document translation and real-time streaming
- Innovative application ideas (chatbots, education, government services)

#### **[Deployment Architecture](DEPLOYMENT_ARCHITECTURE.md)**
Infrastructure and deployment details:
- HuggingFace Spaces deployment process
- Performance characteristics and resource requirements
- Monitoring with Prometheus and structured logging
- CI/CD pipeline and scaling considerations

### ๐Ÿ“– Additional Documentation

#### **[Project Overview](PROJECT_OVERVIEW.md)**
High-level project introduction and goals

#### **[API Reference](API_REFERENCE.md)**
Complete endpoint documentation with examples

## ๐ŸŒŸ Key Achievements & Features

### Custom HuggingFace Models Integration
- **Unified Repository**: `sematech/sema-utils` containing all models
- **Optimized Performance**: CTranslate2 INT8 quantization (75% size reduction)
- **Automatic Updates**: HuggingFace Hub integration with version management
- **Enterprise Caching**: Intelligent model caching and loading strategies

### Enhanced African Language Support
- **55+ African Languages**: Complete FLORES-200 African language coverage
- **Regional Distribution**: West, East, Southern, Central, and North Africa
- **Multiple Scripts**: Latin, Arabic, Ethiopic, Tifinagh support
- **Cultural Context**: Native names and regional information

### Performance & Monitoring
- **Server-Side Timing**: Request performance tracking in headers and responses
- **Prometheus Metrics**: Comprehensive monitoring and analytics
- **Request Tracking**: Unique request IDs for debugging
- **Health Monitoring**: System status and model availability checks

## ๐Ÿ”ง Technical Implementation Highlights

### Model Architecture
```
Custom HuggingFace Models (sematech/sema-utils)
โ”œโ”€โ”€ Translation: NLLB-200 3.3B (CTranslate2 optimized)
โ”œโ”€โ”€ Language Detection: FastText LID.176
โ”œโ”€โ”€ Tokenization: SentencePiece
โ””โ”€โ”€ Language Database: FLORES-200 complete
```

### Performance Metrics
- **Model Size**: 2.5GB (optimized from 6.6GB)
- **Inference Speed**: 0.2-2.5 seconds depending on text length
- **Memory Usage**: ~3.2GB for models, 50-100MB per request
- **Language Detection**: 0.01-0.05 seconds with 99%+ accuracy

### API Enhancements
- **Request Timing**: Server-side performance measurement
- **Language Metadata**: Complete language information system
- **Error Handling**: Comprehensive validation and error responses
- **Rate Limiting**: 60 requests/minute with graceful degradation

## ๐Ÿš€ Quick Start Examples

### Basic Translation with Timing
```bash
curl -v -X POST "https://sematech-sema-api.hf.space/api/v1/translate" \
  -H "Content-Type: application/json" \
  -d '{"text": "Habari ya asubuhi", "target_language": "eng_Latn"}'

# Response includes timing information:
# X-Response-Time: 1.234s
# X-Request-ID: 550e8400-e29b-41d4-a716-446655440000
```

### African Languages Discovery
```bash
# Get all 55+ African languages
curl "https://sematech-sema-api.hf.space/api/v1/languages/african"

# Search for specific African languages
curl "https://sematech-sema-api.hf.space/api/v1/languages/search?q=Akan"
curl "https://sematech-sema-api.hf.space/api/v1/languages/search?q=Bambara"
```

### Language Detection with Confidence
```bash
curl -X POST "https://sematech-sema-api.hf.space/api/v1/detect-language" \
  -H "Content-Type: application/json" \
  -d '{"text": "Habari ya asubuhi"}'

# Returns: detected language, confidence score, timing information
```

## ๐ŸŽฏ Application Use Cases

### 1. Multilingual Chatbot Implementation
```python
async def process_user_input(user_text):
    # 1. Detect language
    detection = await detect_language(user_text)
    
    # 2. Decide processing flow
    if detection.is_english:
        response = await llm_chat(user_text)
    else:
        # Translate โ†’ Process โ†’ Translate back
        english_input = await translate(user_text, "eng_Latn")
        english_response = await llm_chat(english_input)
        response = await translate(english_response, detection.detected_language)
    
    return response
```

### 2. African News Platform
- Aggregate news from multiple African countries
- Translate between African languages
- Provide summaries in user's preferred language

### 3. Educational Platform
- Interactive language learning with African languages
- Cultural context and pronunciation guides
- Progress tracking across multiple languages

### 4. Government Services
- Multilingual official document translation
- Emergency notifications in local languages
- Citizen services in preferred languages

## ๐Ÿ“Š API Statistics & Metrics

### Language Coverage
- **Total Languages**: 200+ (FLORES-200 complete)
- **African Languages**: 55+ (updated from 23)
- **Writing Scripts**: Latin, Arabic, Ethiopic, Tifinagh, Cyrillic, Han, etc.
- **Geographic Regions**: Comprehensive global coverage

### Performance Benchmarks
- **Translation Speed**: 0.2-2.5s depending on text length
- **Language Detection**: 0.01-0.05s with 99%+ accuracy
- **Model Efficiency**: 75% size reduction with maintained quality
- **Concurrent Handling**: Linear scaling with available resources

### Quality Metrics
- **BLEU Scores**: Industry-standard translation quality
- **African Languages**: Specialized cultural context preservation
- **Uptime**: 99.9% target availability
- **Error Rate**: <1% under normal load

## ๐Ÿ”ฎ Future Roadmap

### Immediate (3-6 months)
- User authentication and usage tracking
- Database integration with PostgreSQL
- Redis caching for improved performance
- Advanced monitoring dashboards

### Medium-term (6-12 months)
- Document translation with formatting preservation
- Real-time translation streaming via WebSocket
- Domain-specific models (medical, legal, technical)
- Mobile SDK development

### Long-term (1-2 years)
- AI-powered translation ecosystem
- Enterprise integration platform
- African language research contributions
- Voice-to-voice translation capabilities

## ๐Ÿ› ๏ธ Development & Deployment

### Local Development
```bash
# Clone and setup
git clone https://github.com/lewiskimaru/sema.git
cd sema/backend/sema-api

# Install dependencies
pip install -r requirements.txt

# Run locally
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000
```

### Testing
```bash
# Run comprehensive tests
python tests/test_african_languages_update.py
python tests/test_performance_timing.py
python tests/simple_test.py
```

### Deployment
- **Platform**: HuggingFace Spaces
- **Auto-deployment**: Git integration
- **Model Updates**: Automatic from `sematech/sema-utils`
- **Monitoring**: Prometheus metrics and health checks

## ๐Ÿ“ž Support & Resources

### Documentation Links
- **Live API**: https://sematech-sema-api.hf.space
- **Interactive Docs**: https://sematech-sema-api.hf.space/ (Swagger UI)
- **Health Status**: https://sematech-sema-api.hf.space/health
- **Metrics**: https://sematech-sema-api.hf.space/metrics

### Model Repository
- **HuggingFace**: https://huggingface.co/sematech/sema-utils
- **Model Documentation**: Comprehensive model usage and optimization guides
- **Version History**: Track model updates and improvements

### Community & Support
- **GitHub Repository**: Complete source code and issue tracking
- **Model Contributions**: Community-driven improvements
- **Research Collaboration**: Academic partnerships for African language research

---

**The Sema Translation API represents a significant advancement in African language technology, combining custom HuggingFace models with enterprise-grade infrastructure to serve diverse global communities.**

*Documentation last updated: June 2024 | API Version: 2.0.0*