File size: 1,562 Bytes
c78d747
 
 
 
 
 
 
 
 
f7ca09f
c78d747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gra
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModel
import onnxruntime as rt


ort_session = rt.InferenceSession("/sin-kaf/onnx_model/model.onnx")
ort_session.get_providers()

# model = ORTModel.load_model("/DATA/sin-kaf/onnx_model/model.onnx")
# model = AutoModelForSequenceClassification.from_pretrained('/DATA/sin-kaf/test_trainer/checkpoint-18500')
tokenizer = AutoTokenizer.from_pretrained("Overfit-GM/distilbert-base-turkish-cased-offensive")

def user_greeting(sent):
     
    encoded_dict = tokenizer.encode_plus(
                        sent,
                        add_special_tokens = True,
                        max_length = 64,
                        pad_to_max_length = True,
                        return_attention_mask = True,
                        return_tensors = 'pt',
                    )


    input_ids = encoded_dict['input_ids']
    attention_masks = encoded_dict['attention_mask']


    input_ids = torch.cat([input_ids], dim=0)
    input_mask = torch.cat([attention_masks], dim=0)
   
    input_feed = {
    "input_ids": input_ids.tolist(),
    "attention_mask":input_mask.tolist(),
    }
    output = ort_session.run(None, input_feed)
    return np.argmax((output[0][0]))
    # outputs = model(input_ids, input_mask)
    # return torch.argmax(outputs['logits'])



app =  gra.Interface(fn = user_greeting, inputs="text", outputs="text")
app.launch()
# app.launch(server_name="0.0.0.0")