Spaces:
Runtime error
Runtime error
File size: 1,151 Bytes
e029c27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
def image_predict (image_pt):
model_path = 'model/resnet_ct.h5'
h5_model = load_model(model_path)
#OLD IMAGE
image = cv2.imread(image_pt)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (224, 224))
image = np.array(image) / 255
image = np.expand_dims(image, axis=0)
h5_prediction = h5_model.predict(image)
print('Prediction from h5 model: {}'.format(h5_prediction))
print(h5_prediction)
probability = h5_prediction[0]
print("H5 Predictions:")
status = 'error'
probability = 0
if probability[0] > 0.5:
covid_chest_pred = str('%.2f' % (probability[0] * 100) + '% COVID-Positive')
status = 'Covid-Positive'
probability = (probability[0] * 100)
else:
covid_chest_pred = str('%.2f' % ((1 - probability[0]) * 100) + '% COVID-Negative')
status = 'Covid-Negative'
probability = ((1 - probability[0]) * 100)
print(covid_chest_pred)
return {'status': str(status), 'probability': str(probability) }
myApp = gr.Interface(fn=image_predict, inputs="image", outputs="label")
myApp.launch() |