Spaces:
Running
Running
File size: 8,009 Bytes
4a582ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# The gca code was heavily based on https://github.com/Yaoyi-Li/GCA-Matting
# and https://github.com/open-mmlab/mmediting
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import param_init
class GuidedCxtAtten(nn.Layer):
def __init__(self,
out_channels,
guidance_channels,
kernel_size=3,
stride=1,
rate=2):
super().__init__()
self.kernel_size = kernel_size
self.rate = rate
self.stride = stride
self.guidance_conv = nn.Conv2D(
in_channels=guidance_channels,
out_channels=guidance_channels // 2,
kernel_size=1)
self.out_conv = nn.Sequential(
nn.Conv2D(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=1,
bias_attr=False),
nn.BatchNorm(out_channels))
self.init_weight()
def init_weight(self):
param_init.xavier_uniform(self.guidance_conv.weight)
param_init.constant_init(self.guidance_conv.bias, value=0.0)
param_init.xavier_uniform(self.out_conv[0].weight)
param_init.constant_init(self.out_conv[1].weight, value=1e-3)
param_init.constant_init(self.out_conv[1].bias, value=0.0)
def forward(self, img_feat, alpha_feat, unknown=None, softmax_scale=1.):
img_feat = self.guidance_conv(img_feat)
img_feat = F.interpolate(
img_feat, scale_factor=1 / self.rate, mode='nearest')
# process unknown mask
unknown, softmax_scale = self.process_unknown_mask(unknown, img_feat,
softmax_scale)
img_ps, alpha_ps, unknown_ps = self.extract_feature_maps_patches(
img_feat, alpha_feat, unknown)
self_mask = self.get_self_correlation_mask(img_feat)
# split tensors by batch dimension; tuple is returned
img_groups = paddle.split(img_feat, 1, axis=0)
img_ps_groups = paddle.split(img_ps, 1, axis=0)
alpha_ps_groups = paddle.split(alpha_ps, 1, axis=0)
unknown_ps_groups = paddle.split(unknown_ps, 1, axis=0)
scale_groups = paddle.split(softmax_scale, 1, axis=0)
groups = (img_groups, img_ps_groups, alpha_ps_groups, unknown_ps_groups,
scale_groups)
y = []
for img_i, img_ps_i, alpha_ps_i, unknown_ps_i, scale_i in zip(*groups):
# conv for compare
similarity_map = self.compute_similarity_map(img_i, img_ps_i)
gca_score = self.compute_guided_attention_score(
similarity_map, unknown_ps_i, scale_i, self_mask)
yi = self.propagate_alpha_feature(gca_score, alpha_ps_i)
y.append(yi)
y = paddle.concat(y, axis=0) # back to the mini-batch
y = paddle.reshape(y, alpha_feat.shape)
y = self.out_conv(y) + alpha_feat
return y
def extract_feature_maps_patches(self, img_feat, alpha_feat, unknown):
# extract image feature patches with shape:
# (N, img_h*img_w, img_c, img_ks, img_ks)
img_ks = self.kernel_size
img_ps = self.extract_patches(img_feat, img_ks, self.stride)
# extract alpha feature patches with shape:
# (N, img_h*img_w, alpha_c, alpha_ks, alpha_ks)
alpha_ps = self.extract_patches(alpha_feat, self.rate * 2, self.rate)
# extract unknown mask patches with shape: (N, img_h*img_w, 1, 1)
unknown_ps = self.extract_patches(unknown, img_ks, self.stride)
unknown_ps = unknown_ps.squeeze(axis=2) # squeeze channel dimension
unknown_ps = unknown_ps.mean(axis=[2, 3], keepdim=True)
return img_ps, alpha_ps, unknown_ps
def extract_patches(self, x, kernel_size, stride):
n, c, _, _ = x.shape
x = self.pad(x, kernel_size, stride)
x = F.unfold(x, [kernel_size, kernel_size], strides=[stride, stride])
x = paddle.transpose(x, (0, 2, 1))
x = paddle.reshape(x, (n, -1, c, kernel_size, kernel_size))
return x
def pad(self, x, kernel_size, stride):
left = (kernel_size - stride + 1) // 2
right = (kernel_size - stride) // 2
pad = (left, right, left, right)
return F.pad(x, pad, mode='reflect')
def compute_guided_attention_score(self, similarity_map, unknown_ps, scale,
self_mask):
# scale the correlation with predicted scale factor for known and
# unknown area
unknown_scale, known_scale = scale[0]
out = similarity_map * (
unknown_scale * paddle.greater_than(unknown_ps,
paddle.to_tensor([0.])) +
known_scale * paddle.less_equal(unknown_ps, paddle.to_tensor([0.])))
# mask itself, self-mask only applied to unknown area
out = out + self_mask * unknown_ps
gca_score = F.softmax(out, axis=1)
return gca_score
def propagate_alpha_feature(self, gca_score, alpha_ps):
alpha_ps = alpha_ps[0] # squeeze dim 0
if self.rate == 1:
gca_score = self.pad(gca_score, kernel_size=2, stride=1)
alpha_ps = paddle.transpose(alpha_ps, (1, 0, 2, 3))
out = F.conv2d(gca_score, alpha_ps) / 4.
else:
out = F.conv2d_transpose(
gca_score, alpha_ps, stride=self.rate, padding=1) / 4.
return out
def compute_similarity_map(self, img_feat, img_ps):
img_ps = img_ps[0] # squeeze dim 0
# convolve the feature to get correlation (similarity) map
img_ps_normed = img_ps / paddle.clip(self.l2_norm(img_ps), 1e-4)
img_feat = F.pad(img_feat, (1, 1, 1, 1), mode='reflect')
similarity_map = F.conv2d(img_feat, img_ps_normed)
return similarity_map
def get_self_correlation_mask(self, img_feat):
_, _, h, w = img_feat.shape
self_mask = F.one_hot(
paddle.reshape(paddle.arange(h * w), (h, w)),
num_classes=int(h * w))
self_mask = paddle.transpose(self_mask, (2, 0, 1))
self_mask = paddle.reshape(self_mask, (1, h * w, h, w))
return self_mask * (-1e4)
def process_unknown_mask(self, unknown, img_feat, softmax_scale):
n, _, h, w = img_feat.shape
if unknown is not None:
unknown = unknown.clone()
unknown = F.interpolate(
unknown, scale_factor=1 / self.rate, mode='nearest')
unknown_mean = unknown.mean(axis=[2, 3])
known_mean = 1 - unknown_mean
unknown_scale = paddle.clip(
paddle.sqrt(unknown_mean / known_mean), 0.1, 10)
known_scale = paddle.clip(
paddle.sqrt(known_mean / unknown_mean), 0.1, 10)
softmax_scale = paddle.concat([unknown_scale, known_scale], axis=1)
else:
unknown = paddle.ones([n, 1, h, w])
softmax_scale = paddle.reshape(
paddle.to_tensor([softmax_scale, softmax_scale]), (1, 2))
softmax_scale = paddle.expand(softmax_scale, (n, 2))
return unknown, softmax_scale
@staticmethod
def l2_norm(x):
x = x**2
x = x.sum(axis=[1, 2, 3], keepdim=True)
return paddle.sqrt(x)
|