Spaces:
Running
Running
File size: 9,710 Bytes
4a582ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
import cv2
import numpy as np
import random
import paddle
from paddleseg.cvlibs import manager
import ppmatting.transforms as T
@manager.DATASETS.add_component
class MattingDataset(paddle.io.Dataset):
"""
Pass in a dataset that conforms to the format.
matting_dataset/
|--bg/
|
|--train/
| |--fg/
| |--alpha/
|
|--val/
| |--fg/
| |--alpha/
| |--trimap/ (if existing)
|
|--train.txt
|
|--val.txt
See README.md for more information of dataset.
Args:
dataset_root(str): The root path of dataset.
transforms(list): Transforms for image.
mode (str, optional): which part of dataset to use. it is one of ('train', 'val', 'trainval'). Default: 'train'.
train_file (str|list, optional): File list is used to train. It should be `foreground_image.png background_image.png`
or `foreground_image.png`. It shold be provided if mode equal to 'train'. Default: None.
val_file (str|list, optional): File list is used to evaluation. It should be `foreground_image.png background_image.png`
or `foreground_image.png` or ``foreground_image.png background_image.png trimap_image.png`.
It shold be provided if mode equal to 'val'. Default: None.
get_trimap (bool, optional): Whether to get triamp. Default: True.
separator (str, optional): The separator of train_file or val_file. If file name contains ' ', '|' may be perfect. Default: ' '.
key_del (tuple|list, optional): The key which is not need will be delete to accellect data reader. Default: None.
if_rssn (bool, optional): Whether to use RSSN while Compositing image. Including denoise and blur. Default: False.
"""
def __init__(self,
dataset_root,
transforms,
mode='train',
train_file=None,
val_file=None,
get_trimap=True,
separator=' ',
key_del=None,
if_rssn=False):
super().__init__()
self.dataset_root = dataset_root
self.transforms = T.Compose(transforms)
self.mode = mode
self.get_trimap = get_trimap
self.separator = separator
self.key_del = key_del
self.if_rssn = if_rssn
# check file
if mode == 'train' or mode == 'trainval':
if train_file is None:
raise ValueError(
"When `mode` is 'train' or 'trainval', `train_file must be provided!"
)
if isinstance(train_file, str):
train_file = [train_file]
file_list = train_file
if mode == 'val' or mode == 'trainval':
if val_file is None:
raise ValueError(
"When `mode` is 'val' or 'trainval', `val_file must be provided!"
)
if isinstance(val_file, str):
val_file = [val_file]
file_list = val_file
if mode == 'trainval':
file_list = train_file + val_file
# read file
self.fg_bg_list = []
for file in file_list:
file = os.path.join(dataset_root, file)
with open(file, 'r') as f:
lines = f.readlines()
for line in lines:
line = line.strip()
self.fg_bg_list.append(line)
if mode != 'val':
random.shuffle(self.fg_bg_list)
def __getitem__(self, idx):
data = {}
fg_bg_file = self.fg_bg_list[idx]
fg_bg_file = fg_bg_file.split(self.separator)
data['img_name'] = fg_bg_file[0] # using in save prediction results
fg_file = os.path.join(self.dataset_root, fg_bg_file[0])
alpha_file = fg_file.replace('/fg', '/alpha')
fg = cv2.imread(fg_file)
alpha = cv2.imread(alpha_file, 0)
data['alpha'] = alpha
data['gt_fields'] = []
# line is: fg [bg] [trimap]
if len(fg_bg_file) >= 2:
bg_file = os.path.join(self.dataset_root, fg_bg_file[1])
bg = cv2.imread(bg_file)
data['img'], data['fg'], data['bg'] = self.composite(fg, alpha, bg)
if self.mode in ['train', 'trainval']:
data['gt_fields'].append('fg')
data['gt_fields'].append('bg')
data['gt_fields'].append('alpha')
if len(fg_bg_file) == 3 and self.get_trimap:
if self.mode == 'val':
trimap_path = os.path.join(self.dataset_root, fg_bg_file[2])
if os.path.exists(trimap_path):
data['trimap'] = trimap_path
data['gt_fields'].append('trimap')
data['ori_trimap'] = cv2.imread(trimap_path, 0)
else:
raise FileNotFoundError(
'trimap is not Found: {}'.format(fg_bg_file[2]))
else:
data['img'] = fg
if self.mode in ['train', 'trainval']:
data['fg'] = fg.copy()
data['bg'] = fg.copy()
data['gt_fields'].append('fg')
data['gt_fields'].append('bg')
data['gt_fields'].append('alpha')
data['trans_info'] = [] # Record shape change information
# Generate trimap from alpha if no trimap file provided
if self.get_trimap:
if 'trimap' not in data:
data['trimap'] = self.gen_trimap(
data['alpha'], mode=self.mode).astype('float32')
data['gt_fields'].append('trimap')
if self.mode == 'val':
data['ori_trimap'] = data['trimap'].copy()
# Delete key which is not need
if self.key_del is not None:
for key in self.key_del:
if key in data.keys():
data.pop(key)
if key in data['gt_fields']:
data['gt_fields'].remove(key)
data = self.transforms(data)
# When evaluation, gt should not be transforms.
if self.mode == 'val':
data['gt_fields'].append('alpha')
data['img'] = data['img'].astype('float32')
for key in data.get('gt_fields', []):
data[key] = data[key].astype('float32')
if 'trimap' in data:
data['trimap'] = data['trimap'][np.newaxis, :, :]
if 'ori_trimap' in data:
data['ori_trimap'] = data['ori_trimap'][np.newaxis, :, :]
data['alpha'] = data['alpha'][np.newaxis, :, :] / 255.
return data
def __len__(self):
return len(self.fg_bg_list)
def composite(self, fg, alpha, ori_bg):
if self.if_rssn:
if np.random.rand() < 0.5:
fg = cv2.fastNlMeansDenoisingColored(fg, None, 3, 3, 7, 21)
ori_bg = cv2.fastNlMeansDenoisingColored(ori_bg, None, 3, 3, 7,
21)
if np.random.rand() < 0.5:
radius = np.random.choice([19, 29, 39, 49, 59])
ori_bg = cv2.GaussianBlur(ori_bg, (radius, radius), 0, 0)
fg_h, fg_w = fg.shape[:2]
ori_bg_h, ori_bg_w = ori_bg.shape[:2]
wratio = fg_w / ori_bg_w
hratio = fg_h / ori_bg_h
ratio = wratio if wratio > hratio else hratio
# Resize ori_bg if it is smaller than fg.
if ratio > 1:
resize_h = math.ceil(ori_bg_h * ratio)
resize_w = math.ceil(ori_bg_w * ratio)
bg = cv2.resize(
ori_bg, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR)
else:
bg = ori_bg
bg = bg[0:fg_h, 0:fg_w, :]
alpha = alpha / 255
alpha = np.expand_dims(alpha, axis=2)
image = alpha * fg + (1 - alpha) * bg
image = image.astype(np.uint8)
return image, fg, bg
@staticmethod
def gen_trimap(alpha, mode='train', eval_kernel=7):
if mode == 'train':
k_size = random.choice(range(2, 5))
iterations = np.random.randint(5, 15)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
(k_size, k_size))
dilated = cv2.dilate(alpha, kernel, iterations=iterations)
eroded = cv2.erode(alpha, kernel, iterations=iterations)
trimap = np.zeros(alpha.shape)
trimap.fill(128)
trimap[eroded > 254.5] = 255
trimap[dilated < 0.5] = 0
else:
k_size = eval_kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
(k_size, k_size))
dilated = cv2.dilate(alpha, kernel)
trimap = np.zeros(alpha.shape)
trimap.fill(128)
trimap[alpha >= 250] = 255
trimap[dilated <= 5] = 0
return trimap
|