File size: 9,710 Bytes
4a582ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import math

import cv2
import numpy as np
import random
import paddle
from paddleseg.cvlibs import manager

import ppmatting.transforms as T


@manager.DATASETS.add_component
class MattingDataset(paddle.io.Dataset):
    """
    Pass in a dataset that conforms to the format.
        matting_dataset/
        |--bg/
        |
        |--train/
        |  |--fg/
        |  |--alpha/
        |
        |--val/
        |  |--fg/
        |  |--alpha/
        |  |--trimap/ (if existing)
        |
        |--train.txt
        |
        |--val.txt
    See README.md for more information of dataset.

    Args:
        dataset_root(str): The root path of dataset.
        transforms(list):  Transforms for image.
        mode (str, optional): which part of dataset to use. it is one of ('train', 'val', 'trainval'). Default: 'train'.
        train_file (str|list, optional): File list is used to train. It should be `foreground_image.png background_image.png`
            or `foreground_image.png`. It shold be provided if mode equal to 'train'. Default: None.
        val_file (str|list, optional): File list is used to evaluation. It should be `foreground_image.png background_image.png`
            or `foreground_image.png` or ``foreground_image.png background_image.png trimap_image.png`.
            It shold be provided if mode equal to 'val'. Default: None.
        get_trimap (bool, optional): Whether to get triamp. Default: True.
        separator (str, optional): The separator of train_file or val_file. If file name contains ' ', '|' may be perfect. Default: ' '.
        key_del (tuple|list, optional): The key which is not need will be delete to accellect data reader. Default: None.
        if_rssn (bool, optional): Whether to use RSSN while Compositing image. Including denoise and blur. Default: False.
    """

    def __init__(self,
                 dataset_root,
                 transforms,
                 mode='train',
                 train_file=None,
                 val_file=None,
                 get_trimap=True,
                 separator=' ',
                 key_del=None,
                 if_rssn=False):
        super().__init__()
        self.dataset_root = dataset_root
        self.transforms = T.Compose(transforms)
        self.mode = mode
        self.get_trimap = get_trimap
        self.separator = separator
        self.key_del = key_del
        self.if_rssn = if_rssn

        # check file
        if mode == 'train' or mode == 'trainval':
            if train_file is None:
                raise ValueError(
                    "When `mode` is 'train' or 'trainval', `train_file must be provided!"
                )
            if isinstance(train_file, str):
                train_file = [train_file]
            file_list = train_file

        if mode == 'val' or mode == 'trainval':
            if val_file is None:
                raise ValueError(
                    "When `mode` is 'val' or 'trainval', `val_file must be provided!"
                )
            if isinstance(val_file, str):
                val_file = [val_file]
            file_list = val_file

        if mode == 'trainval':
            file_list = train_file + val_file

        # read file
        self.fg_bg_list = []
        for file in file_list:
            file = os.path.join(dataset_root, file)
            with open(file, 'r') as f:
                lines = f.readlines()
                for line in lines:
                    line = line.strip()
                    self.fg_bg_list.append(line)
        if mode != 'val':
            random.shuffle(self.fg_bg_list)

    def __getitem__(self, idx):
        data = {}
        fg_bg_file = self.fg_bg_list[idx]
        fg_bg_file = fg_bg_file.split(self.separator)
        data['img_name'] = fg_bg_file[0]  # using in save prediction results
        fg_file = os.path.join(self.dataset_root, fg_bg_file[0])
        alpha_file = fg_file.replace('/fg', '/alpha')
        fg = cv2.imread(fg_file)
        alpha = cv2.imread(alpha_file, 0)
        data['alpha'] = alpha
        data['gt_fields'] = []

        # line is: fg [bg] [trimap]
        if len(fg_bg_file) >= 2:
            bg_file = os.path.join(self.dataset_root, fg_bg_file[1])
            bg = cv2.imread(bg_file)
            data['img'], data['fg'], data['bg'] = self.composite(fg, alpha, bg)
            if self.mode in ['train', 'trainval']:
                data['gt_fields'].append('fg')
                data['gt_fields'].append('bg')
                data['gt_fields'].append('alpha')
            if len(fg_bg_file) == 3 and self.get_trimap:
                if self.mode == 'val':
                    trimap_path = os.path.join(self.dataset_root, fg_bg_file[2])
                    if os.path.exists(trimap_path):
                        data['trimap'] = trimap_path
                        data['gt_fields'].append('trimap')
                        data['ori_trimap'] = cv2.imread(trimap_path, 0)
                    else:
                        raise FileNotFoundError(
                            'trimap is not Found: {}'.format(fg_bg_file[2]))
        else:
            data['img'] = fg
            if self.mode in ['train', 'trainval']:
                data['fg'] = fg.copy()
                data['bg'] = fg.copy()
                data['gt_fields'].append('fg')
                data['gt_fields'].append('bg')
                data['gt_fields'].append('alpha')

        data['trans_info'] = []  # Record shape change information

        # Generate trimap from alpha if no trimap file provided
        if self.get_trimap:
            if 'trimap' not in data:
                data['trimap'] = self.gen_trimap(
                    data['alpha'], mode=self.mode).astype('float32')
                data['gt_fields'].append('trimap')
                if self.mode == 'val':
                    data['ori_trimap'] = data['trimap'].copy()

        # Delete key which is not need
        if self.key_del is not None:
            for key in self.key_del:
                if key in data.keys():
                    data.pop(key)
                if key in data['gt_fields']:
                    data['gt_fields'].remove(key)
        data = self.transforms(data)

        # When evaluation, gt should not be transforms.
        if self.mode == 'val':
            data['gt_fields'].append('alpha')

        data['img'] = data['img'].astype('float32')
        for key in data.get('gt_fields', []):
            data[key] = data[key].astype('float32')

        if 'trimap' in data:
            data['trimap'] = data['trimap'][np.newaxis, :, :]
        if 'ori_trimap' in data:
            data['ori_trimap'] = data['ori_trimap'][np.newaxis, :, :]

        data['alpha'] = data['alpha'][np.newaxis, :, :] / 255.

        return data

    def __len__(self):
        return len(self.fg_bg_list)

    def composite(self, fg, alpha, ori_bg):
        if self.if_rssn:
            if np.random.rand() < 0.5:
                fg = cv2.fastNlMeansDenoisingColored(fg, None, 3, 3, 7, 21)
                ori_bg = cv2.fastNlMeansDenoisingColored(ori_bg, None, 3, 3, 7,
                                                         21)
            if np.random.rand() < 0.5:
                radius = np.random.choice([19, 29, 39, 49, 59])
                ori_bg = cv2.GaussianBlur(ori_bg, (radius, radius), 0, 0)
        fg_h, fg_w = fg.shape[:2]
        ori_bg_h, ori_bg_w = ori_bg.shape[:2]

        wratio = fg_w / ori_bg_w
        hratio = fg_h / ori_bg_h
        ratio = wratio if wratio > hratio else hratio

        # Resize ori_bg if it is smaller than fg.
        if ratio > 1:
            resize_h = math.ceil(ori_bg_h * ratio)
            resize_w = math.ceil(ori_bg_w * ratio)
            bg = cv2.resize(
                ori_bg, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR)
        else:
            bg = ori_bg

        bg = bg[0:fg_h, 0:fg_w, :]
        alpha = alpha / 255
        alpha = np.expand_dims(alpha, axis=2)
        image = alpha * fg + (1 - alpha) * bg
        image = image.astype(np.uint8)
        return image, fg, bg

    @staticmethod
    def gen_trimap(alpha, mode='train', eval_kernel=7):
        if mode == 'train':
            k_size = random.choice(range(2, 5))
            iterations = np.random.randint(5, 15)
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
                                               (k_size, k_size))
            dilated = cv2.dilate(alpha, kernel, iterations=iterations)
            eroded = cv2.erode(alpha, kernel, iterations=iterations)
            trimap = np.zeros(alpha.shape)
            trimap.fill(128)
            trimap[eroded > 254.5] = 255
            trimap[dilated < 0.5] = 0
        else:
            k_size = eval_kernel
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
                                               (k_size, k_size))
            dilated = cv2.dilate(alpha, kernel)
            trimap = np.zeros(alpha.shape)
            trimap.fill(128)
            trimap[alpha >= 250] = 255
            trimap[dilated <= 5] = 0

        return trimap