Spaces:
Running
Running
File size: 4,507 Bytes
4a582ec fc3685f 4a582ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from hashlib import sha1
from pathlib import Path
import cv2
import gradio as gr
import numpy as np
from PIL import Image
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import load_entire_model
manager.BACKBONES._components_dict.clear()
manager.TRANSFORMS._components_dict.clear()
import ppmatting as ppmatting
from ppmatting.core import predict
from ppmatting.utils import estimate_foreground_ml
model_names = [
"modnet-mobilenetv2",
"ppmatting-512",
"ppmatting-1024",
"ppmatting-2048",
"modnet-hrnet_w18",
"modnet-resnet50_vd",
]
model_dict = {
name: None
for name in model_names
}
last_result = {
"cache_key": None,
"algorithm": None,
}
def image_matting(
image: np.ndarray,
result_type: str,
bg_color: str,
algorithm: str,
morph_op: str,
morph_op_factor: float,
) -> np.ndarray:
image = np.ascontiguousarray(image)
cache_key = sha1(image).hexdigest()
if cache_key == last_result["cache_key"] and algorithm == last_result["algorithm"]:
alpha = last_result["alpha"]
else:
cfg = Config(f"configs/{algorithm}.yml")
if model_dict[algorithm] is not None:
model = model_dict[algorithm]
else:
model = cfg.model
load_entire_model(model, f"models/{algorithm}.pdparams")
model.eval()
model_dict[algorithm] = model
transforms = ppmatting.transforms.Compose(cfg.val_transforms)
alpha = predict(
model,
transforms=transforms,
image=image,
)
last_result["cache_key"] = cache_key
last_result["algorithm"] = algorithm
last_result["alpha"] = alpha
alpha = (alpha * 255).astype(np.uint8)
kernel = np.ones((5, 5), np.uint8)
if morph_op == "dilate":
alpha = cv2.dilate(alpha, kernel, iterations=int(morph_op_factor))
else:
alpha = cv2.erode(alpha, kernel, iterations=int(morph_op_factor))
alpha = (alpha / 255).astype(np.float32)
image = (image / 255.0).astype("float32")
fg = estimate_foreground_ml(image, alpha)
if result_type == "Remove BG":
result = np.concatenate((fg, alpha[:, :, None]), axis=-1)
elif result_type == "Replace BG":
bg_r = int(bg_color[1:3], base=16)
bg_g = int(bg_color[3:5], base=16)
bg_b = int(bg_color[5:7], base=16)
bg = np.zeros_like(fg)
bg[:, :, 0] = bg_r / 255.
bg[:, :, 1] = bg_g / 255.
bg[:, :, 2] = bg_b / 255.
result = alpha[:, :, None] * fg + (1 - alpha[:, :, None]) * bg
result = np.clip(result, 0, 1)
else:
result = alpha
return result
def main():
with gr.Blocks() as app:
gr.Markdown("Image Matting Powered By AI")
with gr.Row(variant="panel"):
image_input = gr.Image()
image_output = gr.Image()
with gr.Row(variant="panel"):
result_type = gr.Radio(
label="Mode",
show_label=True,
choices=[
"Remove BG",
"Replace BG",
"Generate Mask",
],
value="Remove BG",
)
bg_color = gr.ColorPicker(
label="BG Color",
show_label=True,
value="#000000",
)
algorithm = gr.Dropdown(
label="Algorithm",
show_label=True,
choices=model_names,
value="modnet-hrnet_w18"
)
with gr.Row(variant="panel"):
morph_op = gr.Radio(
label="Post-process",
show_label=True,
choices=[
"Dilate",
"Erode",
],
value="Dilate",
)
morph_op_factor = gr.Slider(
label="Factor",
show_label=True,
minimum=0,
maximum=20,
value=0,
step=1,
)
run_button = gr.Button("Run")
run_button.click(
image_matting,
inputs=[
image_input,
result_type,
bg_color,
algorithm,
morph_op,
morph_op_factor,
],
outputs=image_output,
)
app.launch()
if __name__ == "__main__":
main()
|