File size: 29,351 Bytes
3c7a160
 
5905fd5
3c7a160
5905fd5
3c7a160
 
5905fd5
 
 
 
 
 
 
3c7a160
5905fd5
 
 
3c7a160
 
 
 
 
 
 
 
 
 
 
5905fd5
 
3c7a160
5905fd5
 
 
 
3c7a160
5905fd5
 
 
 
 
 
 
 
 
 
 
 
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5905fd5
 
 
 
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5905fd5
3c7a160
 
 
 
 
 
5905fd5
3c7a160
 
 
 
 
 
 
 
5905fd5
 
3c7a160
 
 
 
 
 
 
5905fd5
 
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5905fd5
 
3c7a160
 
 
 
5905fd5
 
 
 
3c7a160
5905fd5
3c7a160
 
5905fd5
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5905fd5
3c7a160
 
 
 
5905fd5
 
 
 
 
 
 
 
 
 
3c7a160
 
 
 
 
5905fd5
3c7a160
5905fd5
3c7a160
 
 
 
 
5905fd5
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40a0a70
3c7a160
 
40a0a70
5905fd5
 
 
 
 
3c7a160
5905fd5
3c7a160
 
295263b
 
 
5905fd5
 
 
 
3c7a160
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
import gradio as gr
import numpy as np
import soundfile as sf
from datetime import datetime
from time import time as ttime
from my_utils import load_audio
from transformers import pipeline
from text.cleaner import clean_text
from feature_extractor import cnhubert
from timeit import default_timer as timer
from text import cleaned_text_to_sequence
from module.models  import  SynthesizerTrn
import os,re,sys,LangSegment,librosa,pdb,torch,pytz
from module.mel_processing import spectrogram_torch
from transformers.pipelines.audio_utils import ffmpeg_read
from transformers import AutoModelForMaskedLM, AutoTokenizer
from AR.models.t2s_lightning_module import Text2SemanticLightningModule


if "_CUDA_VISIBLE_DEVICES" in os.environ:
    os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
tz = pytz.timezone('Asia/Singapore')
device = "cuda" if torch.cuda.is_available() else "cpu"

def abs_path(dir):
    global_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
    return(os.path.join(global_dir, dir))
gpt_path = abs_path("MODELS/33/33.ckpt")
sovits_path=abs_path("MODELS/33/33.pth")
cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base")
bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large")

if not os.path.exists(cnhubert_base_path):
    cnhubert_base_path = "TencentGameMate/chinese-hubert-base"
if not os.path.exists(bert_path):
    bert_path = "hfl/chinese-roberta-wwm-ext-large"
cnhubert.cnhubert_base_path = cnhubert_base_path

whisper_path = os.environ.get("whisper_path", "pretrained_models/whisper-small")
if not os.path.exists(whisper_path):
    whisper_path = "openai/whisper-small"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=whisper_path,
    chunk_length_s=30,
    device=device,)


is_half = eval(
    os.environ.get("is_half", "True" if torch.cuda.is_available() else "False")
)
device = "cuda" if torch.cuda.is_available() else "cpu"


tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
    bert_model = bert_model.half().to(device)
else:
    bert_model = bert_model.to(device)


def get_bert_feature(text, word2ph):
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)
        res = bert_model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
    assert len(word2ph) == len(text)
    phone_level_feature = []
    for i in range(len(word2ph)):
        repeat_feature = res[i].repeat(word2ph[i], 1)
        phone_level_feature.append(repeat_feature)
    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    return phone_level_feature.T


class DictToAttrRecursive(dict):
    def __init__(self, input_dict):
        super().__init__(input_dict)
        for key, value in input_dict.items():
            if isinstance(value, dict):
                value = DictToAttrRecursive(value)
            self[key] = value
            setattr(self, key, value)

    def __getattr__(self, item):
        try:
            return self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")

    def __setattr__(self, key, value):
        if isinstance(value, dict):
            value = DictToAttrRecursive(value)
        super(DictToAttrRecursive, self).__setitem__(key, value)
        super().__setattr__(key, value)

    def __delattr__(self, item):
        try:
            del self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")


ssl_model = cnhubert.get_model()
if is_half == True:
    ssl_model = ssl_model.half().to(device)
else:
    ssl_model = ssl_model.to(device)


def change_sovits_weights(sovits_path):
    global vq_model, hps
    dict_s2 = torch.load(sovits_path, map_location="cpu")
    hps = dict_s2["config"]
    hps = DictToAttrRecursive(hps)
    hps.model.semantic_frame_rate = "25hz"
    vq_model = SynthesizerTrn(
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model
    )
    if ("pretrained" not in sovits_path):
        del vq_model.enc_q
    if is_half == True:
        vq_model = vq_model.half().to(device)
    else:
        vq_model = vq_model.to(device)
    vq_model.eval()
    print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
    with open("./sweight.txt", "w", encoding="utf-8") as f:
        f.write(sovits_path)


change_sovits_weights(sovits_path)


def change_gpt_weights(gpt_path):
    global hz, max_sec, t2s_model, config
    hz = 50
    dict_s1 = torch.load(gpt_path, map_location="cpu")
    config = dict_s1["config"]
    max_sec = config["data"]["max_sec"]
    t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
    t2s_model.load_state_dict(dict_s1["weight"])
    if is_half == True:
        t2s_model = t2s_model.half()
    t2s_model = t2s_model.to(device)
    t2s_model.eval()
    total = sum([param.nelement() for param in t2s_model.parameters()])
    print("Number of parameter: %.2fM" % (total / 1e6))
    with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)


change_gpt_weights(gpt_path)


def get_spepc(hps, filename):
    audio = load_audio(filename, int(hps.data.sampling_rate))
    audio = torch.FloatTensor(audio)
    audio_norm = audio
    audio_norm = audio_norm.unsqueeze(0)
    spec = spectrogram_torch(
        audio_norm,
        hps.data.filter_length,
        hps.data.sampling_rate,
        hps.data.hop_length,
        hps.data.win_length,
        center=False,
    )
    return spec


dict_language = {
    ("中文1"): "all_zh",#全部按中文识别
    ("English"): "en",#全部按英文识别#######不变
    ("日文1"): "all_ja",#全部按日文识别
    ("中文"): "zh",#按中英混合识别####不变
    ("日本語"): "ja",#按日英混合识别####不变
    ("混合"): "auto",#多语种启动切分识别语种
}


def splite_en_inf(sentence, language):
    pattern = re.compile(r'[a-zA-Z ]+')
    textlist = []
    langlist = []
    pos = 0
    for match in pattern.finditer(sentence):
        start, end = match.span()
        if start > pos:
            textlist.append(sentence[pos:start])
            langlist.append(language)
        textlist.append(sentence[start:end])
        langlist.append("en")
        pos = end
    if pos < len(sentence):
        textlist.append(sentence[pos:])
        langlist.append(language)
    # Merge punctuation into previous word
    for i in range(len(textlist)-1, 0, -1):
        if re.match(r'^[\W_]+$', textlist[i]):
            textlist[i-1] += textlist[i]
            del textlist[i]
            del langlist[i]
    # Merge consecutive words with the same language tag
    i = 0
    while i < len(langlist) - 1:
        if langlist[i] == langlist[i+1]:
            textlist[i] += textlist[i+1]
            del textlist[i+1]
            del langlist[i+1]
        else:
            i += 1

    return textlist, langlist


def clean_text_inf(text, language):
    formattext = ""
    language = language.replace("all_","")
    for tmp in LangSegment.getTexts(text):
        if language == "ja":
            if tmp["lang"] == language or tmp["lang"] == "zh":
                formattext += tmp["text"] + " "
            continue
        if tmp["lang"] == language:
            formattext += tmp["text"] + " "
    while "  " in formattext:
        formattext = formattext.replace("  ", " ")
    phones, word2ph, norm_text = clean_text(formattext, language)
    phones = cleaned_text_to_sequence(phones)
    return phones, word2ph, norm_text

dtype=torch.float16 if is_half == True else torch.float32
def get_bert_inf(phones, word2ph, norm_text, language):
    language=language.replace("all_","")
    if language == "zh":
        bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
    else:
        bert = torch.zeros(
            (1024, len(phones)),
            dtype=torch.float16 if is_half == True else torch.float32,
        ).to(device)

    return bert


def nonen_clean_text_inf(text, language):
    if(language!="auto"):
        textlist, langlist = splite_en_inf(text, language)
    else:
        textlist=[]
        langlist=[]
        for tmp in LangSegment.getTexts(text):
            langlist.append(tmp["lang"])
            textlist.append(tmp["text"])
    print(textlist)
    print(langlist)
    phones_list = []
    word2ph_list = []
    norm_text_list = []
    for i in range(len(textlist)):
        lang = langlist[i]
        phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
        phones_list.append(phones)
        if lang == "zh":
            word2ph_list.append(word2ph)
        norm_text_list.append(norm_text)
    print(word2ph_list)
    phones = sum(phones_list, [])
    word2ph = sum(word2ph_list, [])
    norm_text = ' '.join(norm_text_list)

    return phones, word2ph, norm_text


def nonen_get_bert_inf(text, language):
    if(language!="auto"):
        textlist, langlist = splite_en_inf(text, language)
    else:
        textlist=[]
        langlist=[]
        for tmp in LangSegment.getTexts(text):
            langlist.append(tmp["lang"])
            textlist.append(tmp["text"])
    print(textlist)
    print(langlist)
    bert_list = []
    for i in range(len(textlist)):
        lang = langlist[i]
        phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
        bert = get_bert_inf(phones, word2ph, norm_text, lang)
        bert_list.append(bert)
    bert = torch.cat(bert_list, dim=1)

    return bert


splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }


def get_first(text):
    pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
    text = re.split(pattern, text)[0].strip()
    return text


def get_cleaned_text_final(text,language):
    if language in {"en","all_zh","all_ja"}:
        phones, word2ph, norm_text = clean_text_inf(text, language)
    elif language in {"zh", "ja","auto"}:
        phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
    return phones, word2ph, norm_text

def get_bert_final(phones, word2ph, text,language,device):
    if language == "en":
        bert = get_bert_inf(phones, word2ph, text, language)
    elif language in {"zh", "ja","auto"}:
        bert = nonen_get_bert_inf(text, language)
    elif language == "all_zh":
        bert = get_bert_feature(text, word2ph).to(device)
    else:
        bert = torch.zeros((1024, len(phones))).to(device)
    return bert

def merge_short_text_in_array(texts, threshold):
    if (len(texts)) < 2:
        return texts
    result = []
    text = ""
    for ele in texts:
        text += ele
        if len(text) >= threshold:
            result.append(text)
            text = ""
    if (len(text) > 0):
        if len(result) == 0:
            result.append(text)
        else:
            result[len(result) - 1] += text
    return result

def tprint(text):
    now=datetime.now(tz).strftime('%H:%M:%S')
    print(f'UTC+8 - {now} - ✅{text}')

def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=("Do not split"),playback_speed=1.0, volume_scale=1.0):
    t0 = ttime()
    startTime=timer()
    change_sovits_weights(sovits_path)
    tprint(f'LOADED SoVITS Model: {sovits_path}')
    change_gpt_weights(gpt_path)
    tprint(f'LOADED GPT Model: {gpt_path}')

    prompt_language = dict_language[prompt_language]
    text_language = dict_language[text_language]
    prompt_text = prompt_text.strip("\n")
    if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
    text = text.strip("\n")
    if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
    print(("实际输入的参考文本:"), prompt_text)
    print(("实际输入的目标文本:"), text)
    zero_wav = np.zeros(
        int(hps.data.sampling_rate * 0.3),
        dtype=np.float16 if is_half == True else np.float32,
    )
    with torch.no_grad():
        wav16k, sr = librosa.load(ref_wav_path, sr=16000)
        if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
            raise OSError(("参考音频在3~10秒范围外,请更换!"))
        wav16k = torch.from_numpy(wav16k)
        zero_wav_torch = torch.from_numpy(zero_wav)
        if is_half == True:
            wav16k = wav16k.half().to(device)
            zero_wav_torch = zero_wav_torch.half().to(device)
        else:
            wav16k = wav16k.to(device)
            zero_wav_torch = zero_wav_torch.to(device)
        wav16k = torch.cat([wav16k, zero_wav_torch])
        ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
            "last_hidden_state"
        ].transpose(
            1, 2
        )  # .float()
        codes = vq_model.extract_latent(ssl_content)
        prompt_semantic = codes[0, 0]
    t1 = ttime()

    phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language)

    if (how_to_cut == ("Split into groups of 4 sentences")):
        text = cut1(text)
    elif (how_to_cut == ("Split every 50 characters")):
        text = cut2(text)
    elif (how_to_cut == ("Split at CN/JP periods (。)")):
        text = cut3(text)
    elif (how_to_cut == ("Split at English periods (.)")):
        text = cut4(text)
    elif (how_to_cut == ("Split at punctuation marks")):
        text = cut5(text)
    while "\n\n" in text:
        text = text.replace("\n\n", "\n")
    print(("实际输入的目标文本(切句后):"), text)
    texts = text.split("\n")
    texts = merge_short_text_in_array(texts, 5)
    audio_opt = []
    bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype)

    for text in texts:
        if (len(text.strip()) == 0):
            continue
        if (text[-1] not in splits): text += "。" if text_language != "en" else "."
        print(("实际输入的目标文本(每句):"), text)
        phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language)
        bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype)
        bert = torch.cat([bert1, bert2], 1)

        all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
        prompt = prompt_semantic.unsqueeze(0).to(device)
        t2 = ttime()
        with torch.no_grad():
            # pred_semantic = t2s_model.model.infer(
            pred_semantic, idx = t2s_model.model.infer_panel(
                all_phoneme_ids,
                all_phoneme_len,
                prompt,
                bert,
                # prompt_phone_len=ph_offset,
                top_k=config["inference"]["top_k"],
                early_stop_num=hz * max_sec,
            )
        t3 = ttime()
        # print(pred_semantic.shape,idx)
        pred_semantic = pred_semantic[:, -idx:].unsqueeze(
            0
        )  # .unsqueeze(0)#mq要多unsqueeze一次
        refer = get_spepc(hps, ref_wav_path)  # .to(device)
        if is_half == True:
            refer = refer.half().to(device)
        else:
            refer = refer.to(device)
        # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
        audio = (
            vq_model.decode(
                pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
            )
                .detach()
                .cpu()
                .numpy()[0, 0]
        ) 
        max_audio=np.abs(audio).max()
        if max_audio>1:audio/=max_audio
        audio_opt.append(audio)
        audio_opt.append(zero_wav)
        t4 = ttime()
    print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
    #yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)
    audio_data = (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)
    if playback_speed != 1.0:
        audio_data_float = audio_data.astype(np.float32) / 32768  
        audio_data_stretched = librosa.effects.time_stretch(audio_data_float, rate=playback_speed)
        audio_data = (audio_data_stretched * 32768).astype(np.int16)  
    audio_data = (audio_data.astype(np.float32) * volume_scale).astype(np.int16)
    output_wav = "output_audio.wav"  
    sf.write(output_wav, audio_data, hps.data.sampling_rate)
    endTime=timer()
    tprint(f'TTS COMPLETE,{round(endTime-startTime,4)}s')
    return output_wav

def split(todo_text):
    todo_text = todo_text.replace("……", "。").replace("——", ",")
    if todo_text[-1] not in splits:
        todo_text += "。"
    i_split_head = i_split_tail = 0
    len_text = len(todo_text)
    todo_texts = []
    while 1:
        if i_split_head >= len_text:
            break  
        if todo_text[i_split_head] in splits:
            i_split_head += 1
            todo_texts.append(todo_text[i_split_tail:i_split_head])
            i_split_tail = i_split_head
        else:
            i_split_head += 1
    return todo_texts


def cut1(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    split_idx = list(range(0, len(inps), 4))
    split_idx[-1] = None
    if len(split_idx) > 1:
        opts = []
        for idx in range(len(split_idx) - 1):
            opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
    else:
        opts = [inp]
    return "\n".join(opts)


def cut2(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    if len(inps) < 2:
        return inp
    opts = []
    summ = 0
    tmp_str = ""
    for i in range(len(inps)):
        summ += len(inps[i])
        tmp_str += inps[i]
        if summ > 50:
            summ = 0
            opts.append(tmp_str)
            tmp_str = ""
    if tmp_str != "":
        opts.append(tmp_str)
    # print(opts)
    if len(opts) > 1 and len(opts[-1]) < 50:  
        opts[-2] = opts[-2] + opts[-1]
        opts = opts[:-1]
    return "\n".join(opts)


def cut3(inp):
    inp = inp.strip("\n")
    return "\n".join(["%s" % item for item in inp.strip("。").split("。")])


def cut4(inp):
    inp = inp.strip("\n")
    return "\n".join(["%s" % item for item in inp.strip(".").split(".")])


# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
def cut5(inp):
    # if not re.search(r'[^\w\s]', inp[-1]):
    # inp += '。'
    inp = inp.strip("\n")
    punds = r'[,.;?!、,。?!;:]'
    items = re.split(f'({punds})', inp)
    items = ["".join(group) for group in zip(items[::2], items[1::2])]
    opt = "\n".join(items)
    return opt


def custom_sort_key(s):
    # 使用正则表达式提取字符串中的数字部分和非数字部分
    parts = re.split('(\d+)', s)
    # 将数字部分转换为整数,非数字部分保持不变
    parts = [int(part) if part.isdigit() else part for part in parts]
    return parts

def update_model(choice):
    global gpt_path, sovits_path  
    model_info = models[choice]
    gpt_path = abs_path(model_info["gpt_weight"])
    sovits_path = abs_path(model_info["sovits_weight"])
    model_name = choice
    tone_info = model_info["tones"]["tone1"] 
    tone_sample_path = abs_path(tone_info["sample"])
    tprint(f'SELECT MODEL:{choice}')
    # 返回默认tone“tone1”
    return (
        tone_info["example_voice_wav"],   
        tone_info["example_voice_wav_words"],   
        model_info["default_language"],   
        model_info["default_language"],
        model_name,
        "tone1"  ,
        tone_sample_path
    )

def update_tone(model_choice, tone_choice):
    model_info = models[model_choice]  
    tone_info = model_info["tones"][tone_choice]  
    example_voice_wav = abs_path(tone_info["example_voice_wav"])  
    example_voice_wav_words = tone_info["example_voice_wav_words"]  
    tone_sample_path = abs_path(tone_info["sample"])
    return example_voice_wav, example_voice_wav_words,tone_sample_path

def transcribe(voice):
    time1=timer()
    tprint('Start transcribe')
    task="transcribe"
    if voice is None:
        print("No audio file submitted! Please upload or record an audio file before submitting your request.")
    R = pipe(voice, batch_size=8, generate_kwargs={"task": task}, return_timestamps=True,return_language=True)
    text=R['text']
    lang=R['chunks'][0]['language']
    if lang=='english':
      language='English'
    elif lang =='chinese':
      language='中文'
    elif lang=='japanese':
      language = '日本語'

    time2=timer()
    tprint(f'TRANSCRIBE COMPLETE,{round(time2-time1,4)}s')
    print(f'language:{language},words:{text}')
    return  text,language  

def clone_voice(user_voice,user_text,user_lang):
    tprint('Start clone')
    time1=timer()
    global gpt_path, sovits_path
    gpt_path = abs_path("pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
    #tprint(f'Model loaded:{gpt_path}')
    sovits_path = abs_path("pretrained_models/s2G488k.pth")
    #tprint(f'Model loaded:{sovits_path}')
    prompt_text, prompt_language = transcribe(user_voice)
    output_wav = get_tts_wav(
    user_voice,
    prompt_text,
    prompt_language,
    user_text,
    user_lang,
    how_to_cut="Do not split",
    playback_speed=1.0,
    volume_scale=1.0)
    time2=timer()
    tprint(f'CLONE COMPLETE,{round(time2-time1,4)}s')
    return output_wav


from info import models
models_by_language = {
    "English": [],
    "中文": [],
    "日本語": []
}
for model_name, model_info in models.items():
    language = model_info["default_language"]
    models_by_language[language].append((model_name, model_info))

##########GRADIO###########

with gr.Blocks(theme='remilia/Ghostly') as app:
    gr.HTML('''
  <h1 style="font-size: 25px;">A TTS GENERATOR</h1>
  <p style="margin-bottom: 10px; font-size: 100%">
  If you like this space, please click the ❤️ at the top of the page..如喜欢,请点一下页面顶部的❤️<br>
    💡This space is based on the innovative text-to-speech generation solution
    <a href="https://github.com/RVC-Boss/GPT-SoVITS" target="_blank">GPT-SoVITS</a> .
    You can visit the repo's github homepage to learn training and inference.<br>
    本空间基于新式的文字转语音生成方案 <a href="https://github.com/RVC-Boss/GPT-SoVITS" target="_blank">GPT-SoVITS</a> .
    你可以前往项目的github主页学习如何推理和训练。<br>
    ✏️Generating voice is very slow due to using HuggingFace's free CPU in this space. For faster generation, 
    click the Colab icon below to use this space in Colab, which will significantly improve the speed.<br>
    由于本空间使用huggingface的免费CPU进行推理,因此速度很慢,如想快速生成,
    请点击下方的Colab图标,前往Colab使用已获得更快的生成速度。
  </p>
   <a href="https://colab.research.google.com/drive/1fTuPZ4tZsAjS-TrhQWMCb7KRdnU8aF6j#scrollTo=MDtJIbLdLHe9" target="_blank"><img src="https://camo.githubusercontent.com/dd83d4a334eab7ada034c13747d9e2237182826d32e3fda6629740b6e02f18d8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6c61622d4639414230303f7374796c653d666f722d7468652d6261646765266c6f676f3d676f6f676c65636f6c616226636f6c6f723d353235323532" alt="colab"></a>
''')

    default_voice_wav, default_voice_wav_words, default_language, _, default_model_name, _, default_tone_sample_path = update_model("Trump")
    english_models = [name for name, _ in models_by_language["English"]]
    chinese_models = [name for name, _ in models_by_language["中文"]]
    japanese_models = [name for name, _ in models_by_language["日本語"]]
    with gr.Row():
        english_choice = gr.Radio(english_models, label="EN|English Model",value="Trump")
        chinese_choice = gr.Radio(chinese_models, label="CN|中文模型")
        japanese_choice = gr.Radio(japanese_models, label="JP|日本語モデル")

    plsh='Text must match the selected language option to prevent errors, for example, if English is input but Chinese is selected for generation./文字一定要和语言选项匹配,不然要报错,比如输入的是英文,生成语言选中文'
    with gr.Row():
        model_name = gr.Textbox(label="Seleted Model/已选模型", value=default_model_name, scale=1) 
        text = gr.Textbox(label="Input some text for voice generation/输入想要生成语音的文字", lines=5,scale=8,
        placeholder=plsh)


    with gr.Row():
          tone_select = gr.Radio(
            label="Select Tone/选择语气",
            choices=["tone1","tone2","tone3"],
            value="tone1",
            info='Tone influences the emotional expression ',scale=1)
          tone_sample=gr.Audio(label="🔊Preview tone/试听语气 ", scale=3)

    with gr.Row():
            text_language = gr.Radio(
            label="Select language for input text/输入的文字对应语言",
            choices=["中文","English","日本語"],
            value=default_language,
            info='Input text and language must match.',scale=2,
            )
            how_to_cut = gr.Dropdown(
                label=("How to split?"),
                choices=[("Do not split"), ("Split into groups of 4 sentences"), ("Split every 50 characters"), 
                         ("Split at CN/JP periods (。)"), ("Split at English periods (.)"), ("Split at punctuation marks"), ],
                value=("Split into groups of 4 sentences"),
                interactive=True,
            info='A suitable splitting method can achieve better generation results',scale=3
            )
    with gr.Accordion(label="prpt voice", open=False,visible=False):
        with gr.Row(visible=True):
            inp_ref = gr.Audio(label="Reference audio", type="filepath", value=default_voice_wav, scale=3)
            prompt_text = gr.Textbox(label="Reference text", value=default_voice_wav_words, scale=3)
            prompt_language = gr.Dropdown(label="Language of the reference audio", choices=["中文", "English", "日本語"], value=default_language, scale=1,interactive=False)

    
    
    with gr.Accordion(label="Additional generation options/附加生成选项", open=False):
        volume = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.01, label='Volume')
        speed = gr.Slider(minimum=0.5, maximum=1.5, value=1, step=0.05, label='Speed')
    
    
    with gr.Row():
        main_button = gr.Button("✨Generate Voice", variant="primary", scale=1)
        output = gr.Audio(label="💾Download it by clicking ⬇️", scale=3)
        #info = gr.Textbox(label="INFO", visible=True, readonly=True, scale=1)

    gr.HTML('''<br><br>
    <h1 style="font-size: 25px;">Clone custom Voice/克隆自定义声音</h1>
    <p style="margin-bottom: 10px; font-size: 100%">Need 3~10s audio.This involves voice-to-text conversion followed by text-to-voice conversion, so it takes longer time<br>
    需要3~10秒语音,这个会涉及语音转文字,之后再转语音,所以耗时比较久
    </p>''')
    with gr.Row():
        user_voice = gr.Audio(sources=["microphone", "upload"],type="filepath", label="(3~10s)Upload or Record audio/上传或录制声音",scale=3)
        user_lang = gr.Dropdown(label="Language/生成语言", choices=["中文", "English", "日本語"],scale=1)
        user_text= gr.Textbox(label="Text for generation/输入想要生成语音的文字", lines=5,scale=5,
        placeholder=plsh)
        
    gr.HTML('''
    <p style="margin-bottom: 10px; font-size: 100%">
    🚨Custom sounds must be fully displayed before clicking the clone button; otherwise, an error will be reported.<br>
    一定要上面显示出自定义声音,再点击clone按钮,不然100%会报错<br>
    💽Recording requires microphone permissions to be enabled in your browser..录音请确保开启浏览器录音权限

    </p>''')
    user_button = gr.Button("✨Clone Voice", variant="primary")
    user_output = gr.Audio(label="💾Output wave file,Download it by clicking ⬇️")

    gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLMP9" /></div>''')
    
    english_choice.change(update_model, inputs=[english_choice], outputs=[inp_ref, prompt_text, prompt_language, text_language, model_name, tone_select, tone_sample])
    chinese_choice.change(update_model, inputs=[chinese_choice], outputs=[inp_ref, prompt_text, prompt_language, text_language, model_name, tone_select, tone_sample])
    japanese_choice.change(update_model, inputs=[japanese_choice], outputs=[inp_ref, prompt_text, prompt_language, text_language, model_name, tone_select, tone_sample])
    tone_select.change(update_tone, inputs=[model_name, tone_select], outputs=[inp_ref, prompt_text, tone_sample])
    
    main_button.click(
    get_tts_wav,
    inputs=[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut,speed,volume],
    outputs=[output])

    user_button.click(
    clone_voice,
    inputs=[user_voice,user_text,user_lang],
    outputs=[user_output])

app.launch(share=True)