Spaces:
Runtime error
Runtime error
File size: 9,589 Bytes
ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 ed6bf09 e20f8d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# import gradio as gr
# from PIL import Image
# import torch
# from transformers import CLIPProcessor, CLIPModel, AutoTokenizer, AutoModelForCausalLM
# # Set device to CPU and default dtype to float32
# DEVICE = torch.device("cpu")
# torch.set_default_dtype(torch.float32)
# # Load CLIP model and processor
# try:
# clip_model = CLIPModel.from_pretrained(
# "openai/clip-vit-base-patch32",
# torch_dtype=torch.float32
# ).to(DEVICE)
# clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# except Exception as e:
# raise Exception(f"Error loading CLIP model or processor: {str(e)}")
# # Load language model and tokenizer
# def load_model():
# try:
# # Use a lightweight model suitable for CPU (distilgpt2 for lower memory)
# #model_name = "distilgpt2" # Switched to distilgpt2 for better CPU performance
# model_name="microsoft/phi-3-mini-4k-instruct"
# model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch.float32,
# trust_remote_code=True
# ).to(DEVICE)
# tokenizer = AutoTokenizer.from_pretrained(
# model_name,
# trust_remote_code=True
# )
# # Set pad token if not defined
# if tokenizer.pad_token is None:
# tokenizer.pad_token = tokenizer.eos_token
# model.config.pad_token_id = model.config.eos_token_id
# model.eval()
# return model, tokenizer
# except Exception as e:
# raise Exception(f"Error loading language model: {str(e)}")
# # Simple multimodal captioning function
# def generate_caption(image, model, tokenizer):
# try:
# if not isinstance(image, Image.Image):
# return "Error: Input must be a valid image."
# if image.mode != "RGB":
# image = image.convert("RGB")
# # Process image with CLIP
# image_inputs = clip_processor(images=image, return_tensors="pt").to(DEVICE)
# with torch.no_grad():
# image_embedding = clip_model.get_image_features(**image_inputs).to(torch.float32)
# # Prepare prompt
# prompt = "Caption this image:"
# inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
# input_ids = inputs["input_ids"].to(DEVICE)
# attention_mask = inputs["attention_mask"].to(DEVICE)
# # Simple projection: use image embedding as a prefix
# projection = torch.nn.Linear(512, model.config.hidden_size).to(DEVICE)
# with torch.no_grad():
# image_embedding_projected = projection(image_embedding)
# # Combine image and text embeddings
# text_embedding = model.get_input_embeddings()(input_ids)
# fused_embedding = torch.cat([image_embedding_projected.unsqueeze(1), text_embedding], dim=1)
# attention_mask = torch.cat([
# torch.ones(input_ids.size(0), 1, device=DEVICE),
# attention_mask
# ], dim=1)
# # Generate caption
# with torch.no_grad():
# generated_ids = model.generate(
# inputs_embeds=fused_embedding,
# attention_mask=attention_mask,
# max_new_tokens=50,
# min_length=10,
# num_beams=3, # Reduced for CPU speed
# repetition_penalty=1.2,
# do_sample=False
# )
# caption = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
# return caption.strip()
# except Exception as e:
# return f"Error generating caption: {str(e)}"
# # Load model and tokenizer
# model, tokenizer = load_model()
# # Gradio interface with explicit component configuration
# def gradio_caption(image):
# if image is None:
# return "Please upload an image."
# result = generate_caption(image, model, tokenizer)
# return result if isinstance(result, str) else str(result)
# # Define components explicitly to avoid schema issues
# inputs = gr.Image(
# type="pil",
# label="Upload an Image",
# sources=["upload"], # Restrict to uploads to simplify schema
# )
# outputs = gr.Textbox(
# label="Generated Caption",
# lines=2,
# placeholder="Caption will appear here..."
# )
# # Use gr.Blocks for finer control instead of gr.Interface
# with gr.Blocks(title="CPU-Based Image Captioning") as interface:
# gr.Markdown(
# """
# # CPU-Based Image Captioning with CLIP and DistilGPT2
# Upload an image to generate a caption using a lightweight multimodal model.
# This app runs on CPU and may produce basic captions due to simplified processing.
# """
# )
# with gr.Row():
# with gr.Column():
# image_input = inputs
# submit_button = gr.Button("Generate Caption")
# with gr.Column():
# caption_output = outputs
# submit_button.click(
# fn=gradio_caption,
# inputs=image_input,
# outputs=caption_output
# )
# # Launch locally with debugging enabled
# interface.launch(debug=True)
import gradio as gr
from PIL import Image
import torch
from transformers import CLIPProcessor, CLIPModel, AutoTokenizer, AutoModelForCausalLM
# Set device to CPU and default dtype to float32
DEVICE = torch.device("cpu")
torch.set_default_dtype(torch.float32)
# Load CLIP model and processor
try:
clip_model = CLIPModel.from_pretrained(
"openai/clip-vit-base-patch32",
torch_dtype=torch.float32
).to(DEVICE)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
except Exception as e:
raise Exception(f"Error loading CLIP model or processor: {str(e)}")
# Load language model and tokenizer
def load_model():
try:
#model_name = "distilgpt2"
model_name="microsoft/phi-3-mini-4k-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
trust_remote_code=True
).to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
model.eval()
return model, tokenizer
except Exception as e:
raise Exception(f"Error loading language model: {str(e)}")
# Caption generation logic
def generate_caption(image, model, tokenizer):
try:
# Ensure the image is a PIL Image and convert to RGB if necessary
if not isinstance(image, Image.Image):
image = Image.frombytes('RGB', image.size, image.rgb) if hasattr(image, 'rgb') else image
else:
# Convert to RGB if the image has a different mode (e.g., RGBA, L)
if image.mode != 'RGB':
image = image.convert('RGB')
image_inputs = clip_processor(images=image, return_tensors="pt").to(DEVICE)
with torch.no_grad():
image_embedding = clip_model.get_image_features(**image_inputs).to(torch.float32)
prompt = "[IMG] Caption this image:"
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
input_ids = inputs["input_ids"].to(DEVICE)
attention_mask = inputs["attention_mask"].to(DEVICE)
projection = torch.nn.Linear(512, model.config.hidden_size).to(DEVICE)
with torch.no_grad():
image_embedding_projected = projection(image_embedding)
text_embedding = model.get_input_embeddings()(input_ids)
fused_embedding = torch.cat([image_embedding_projected.unsqueeze(1), text_embedding], dim=1)
attention_mask = torch.cat([
torch.ones(input_ids.size(0), 1, device=DEVICE),
attention_mask
], dim=1)
with torch.no_grad():
generated_ids = model.generate(
inputs_embeds=fused_embedding,
attention_mask=attention_mask,
max_new_tokens=50,
min_length=10,
num_beams=3,
repetition_penalty=1.2,
do_sample=False
)
caption = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return caption.strip()
except Exception as e:
return f"Error generating caption: {str(e)}"
# Load model/tokenizer
model, tokenizer = load_model()
# Wrapper for Gradio function call
def gradio_caption(image):
if image is None:
return "Please upload an image."
return generate_caption(image, model, tokenizer)
# Reusable UI component blocks
def create_image_input():
return gr.Image(
type="pil",
label="Upload an Image",
sources=["upload"]
)
def create_caption_output():
return gr.Textbox(
label="Generated Caption",
lines=2,
placeholder="Caption will appear here..."
)
# Build UI
interface = gr.Interface(
fn=gradio_caption,
inputs=gr.Image(type="pil", label="Upload an Image"),
outputs=gr.Textbox(label="Generated Caption"),
title="Image Captioning with Fine-Tuned MultiModalModel (Epoch 0)",
description=(
"Upload an image to generate a caption using a fine-tuned multimodal model based on Phi-3 and CLIP. "
"The weights from Epoch_0 are used here, but the model may not generate accurate captions due to limited training."
)
)
interface.launch()
|