Spaces:
Runtime error
Runtime error
File size: 16,966 Bytes
2c8a8d3 12d2a52 1d50f06 2c8a8d3 1d50f06 2c8a8d3 1d50f06 2c8a8d3 1d50f06 2c8a8d3 1d50f06 ba32bfd 1d50f06 2c8a8d3 1d50f06 2c8a8d3 1d50f06 2c8a8d3 1d50f06 2c8a8d3 1d50f06 2c8a8d3 1d50f06 2c8a8d3 26557fc 2898bf9 2c8a8d3 90e53a6 38b31c0 2c8a8d3 0af732e be75d7a e56f00c 2c8a8d3 2898bf9 2c8a8d3 e384182 be75d7a 2c8a8d3 e56f00c 2c8a8d3 0af732e 2c8a8d3 e56f00c 1d50f06 2c8a8d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# -*- coding: utf-8 -*-
"""batch aesthetics predictor v2 - release.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1zTrHop7pStcCwPAUP_nekK1rp6lcppYx
"""
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# #@title Install environment & dl MLP { form-width: "100%", display-mode: "form" }
# !pip install git+https://github.com/openai/CLIP.git
# !pip install gradio~=3.18.0
# #!pip install torch==1.13.1#+cu116
# !pip install pytorch-lightning~=2.0.1
# !wget -nc https://huggingface.co/spaces/Seedmanc/batch-laion-aesthetic-predictor/resolve/main/sac%2Blogos%2Bava1-l14-linearMSE.pth
#@title CLIP dl & init { run: "auto", vertical-output: true, form-width: "25%", display-mode: "form" }
checkpoint = "ViT-L/14" #@param ["ViT-L/14", "ViT-L/14@336px"]
import numpy as np
import torch
import pytorch_lightning as pl
import torch.nn as nn
import clip
import time
global prev_time
global isCpu
# if you changed the MLP architecture during training, change it also here:
class MLP(pl.LightningModule):
def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
super().__init__()
self.input_size = input_size
self.xcol = xcol
self.ycol = ycol
self.layers = nn.Sequential(
nn.Linear(self.input_size, 1024),
#nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(1024, 128),
#nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, 64),
#nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 16),
#nn.ReLU(),
nn.Linear(16, 1)
)
def forward(self, x):
return self.layers(x)
def normalized(a, axis=-1, order=2):
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
l2[l2 == 0] = 1
return a / np.expand_dims(l2, axis)
def load_models():
model = MLP(768)
global device
device = "cuda" if torch.cuda.is_available() else "cpu"
global isCpu
isCpu = device == "cpu"
s = torch.load("sac+logos+ava1-l14-linearMSE.pth", map_location=device)
model.load_state_dict(s)
model.to(device)
model.eval()
model2, preprocess = clip.load(checkpoint, device=device, jit=True)
model_dict = {}
model_dict['classifier'] = model
model_dict['clip_model'] = model2
model_dict['clip_preprocess'] = preprocess
model_dict['device'] = device
return model_dict
if __name__ == '__main__':
print('\tinit models')
global model_dict
prev_time = time.time()
model_dict = load_models()
print('model load', time.time() - prev_time)
description = f"""
## Batch Image Aesthetic Predictor
0. Based on https://huggingface.co/spaces/Geonmo/laion-aesthetic-predictor, I just expanded the GUI & added stats.
1. This model is designed by adding five MLP layers on top of (frozen) CLIP <u>**{checkpoint}**</u> checkpoint and only the MLP layers are fine-tuned with a lot of images by a regression loss term such as MSE and MAE.
2. Output is bounded from 0 to 10. The higher the better.
3. The MLP being used currently is: **sac+logos+ava1-l14-linearMSE.pth** trained on 224x224 images.
4. Running on **{device}**{', be patient. Progressive output & immediate stats are available.' if isCpu else '. Batch mode enabled, results after completion.'}
5. Please don't click 'Submit' again during the processing, it'll mess things up. To stop processing, clear the file input. If the results are missing from the stats or export areas at the end, sort the table by any header & wait.
{'6. The MLP was not retrained for this CLIP checkpoint, correct results are not guaranteed. It is also 2x slower.' if checkpoint != "ViT-L/14" else ''}
"""
#@title 👁️⃤ { run: "auto", form-width: "15%" }
global predict#or
writeClip = False #param {type:"boolean"}
import os
from PIL import Image
if writeClip: #disabled in v1
import torchvision
os.makedirs('CLIPped', exist_ok=True)
def predict(image):
img_input = model_dict['clip_preprocess'](Image.open(image))
clipped = None
if writeClip:
clipped = img_input
image_input = img_input.unsqueeze(0).to(model_dict['device']) #try batch
with torch.no_grad():
image_features = model_dict['clip_model'].encode_image(image_input)
if model_dict['device'] == 'cuda': # add TPU support?
im_emb_arr = normalized(image_features.detach().cpu().numpy())
im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.cuda.FloatTensor)
else:
im_emb_arr = normalized(image_features.detach().numpy())
im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.FloatTensor)
prediction = model_dict['classifier'](im_emb)
score = prediction.item() #optimize?
return score, clipped
#@title Wrapper & stats { form-width: "10%" }
DEBUG = True #@param {type:"boolean"}
autoclearLog = True #@param {type:"boolean"}
import csv
import sys
import gradio as gr
if DEBUG: print(gr.__version__) #
def defStats():
return {'Max':{}, 'Max - min': {}}
global Ready
global avgScore
global eta
global speed
global canPoll
canPoll=Ready =False
eta = avgScore = None
speed = 0
Stats = defStats()
global default_mode
default_mode = list(Stats.keys())[1]
def log(x = '', y = None): # debug only
if not DEBUG:
return x
global prev_time
print(f"<\033[97m{sys._getframe().f_back.f_code.co_name}\033[96m>:")
if x:
print(time.strftime('%M:%S '), x, round(time.time() - prev_time, 3), '\033[0m')
if y:
print(' extra: ', y, '\033[0m')
prev_time = time.time()
return x
def pollStatus(table=[]): ### TODO idk what to do
time.sleep(1)
spd = speed and (f'{round(speed,1)} s/f' if speed >= 1 else f'{round(1/speed,1)} f/s')
stext = f' Avg speed: {spd}.' if speed else ''
etext = f' ETA: {eta} {"s." if type(eta) == int else ""}' if eta else ''
atext = f'Running average: {avgScore}.' if avgScore else ''
return f"[{time.strftime('%M:%S')}] {' Ready.' if not atext else ''} {atext} {etext} {stext}" if canPoll else 'idle'
def switch_stats(mode):
global default_mode
default_mode = mode if mode else 'Max'
return Stats[default_mode]
def writeStats(labels):
with open('stats.csv', 'w', newline='') as f:
writer = csv.writer(f)
log('actual write stats', labels and labels.values()) #
writer.writerow(gr.utils.sanitize_list_for_csv(labels.keys()))
writer.writerow(gr.utils.sanitize_list_for_csv(labels.values()))
# MAIN ################################################################
def batch_predict(files=None, progress=gr.Progress()): #=> stats_toggle, stats_output, table_output, submit_btn
run_time = time.time()
if files and len(files) > 1:
global eta
eta = 'calculating...'
results = list()
log('has file(s)?', files and files[0])
global Stats
global Ready
Stats = defStats()
if files is None:
log('empty load')
yield gr.update(), None, None, gr.update()
log('ABORT')
return
else:
maxSteps = min(len(files), 3) if isCpu else len(files)
log('good2go')
yield gr.update(visible=False), gr.update(visible=False), None, gr.update(variant="secondary")
progress((1, maxSteps), unit='', desc='Importing...')
clearStats()
log('start the main loop')
times=list()
clips=list()
for idx,file in enumerate(files, start=1):
prev_time = time.time()
score, clipped = predict(file)
if not Ready: # the solution to the interruption bug, do not remove #
return
results.append([file.orig_name, round(score, 5), None])
if writeClip: #disabled in v1
clips.append((clipped, file.orig_name))
times.append(time.time() - prev_time) #simplify
asyncThreshold = 1 if isCpu else len(files)-1
if (idx <= asyncThreshold):
progress((idx+1, maxSteps), unit='', desc='Starting...' if isCpu else 'Working...')
if (idx > asyncThreshold) and (idx < len(files)): # === False if not isCpu
global avgScore
global speed
speed = np.mean(times)
avgScore = statistics(results, False)
eta = round(speed*(len(files)-idx+1)) # +1 or [1::]?
log(idx)
yield gr.update(), None, results, gr.update()
table_data = results
if DEBUG: print('RUN time', time.time() - run_time, 'avg', np.mean(times)) #
if len(results) > 1:
eta = 'finishing...'
log('finishing')
stats = statistics(results)
for i, row in enumerate(table_data):
table_data[i][2] = round((row[1] - stats['AVG'])**2, 4) # pylint: disable=report-general-type-issues
writeStats(stats)
log('|2|', table_data) #
yield gr.update(visible=True), gr.update(value=switch_stats(default_mode), visible=True), table_data, gr.update(variant="primary")
else:
log('I', table_data) #
yield gr.update(visible=False), gr.update(value=None, visible=False), table_data, gr.update(variant="primary") #
avgScore = None
if writeClip: #supposedly runs async w/o delaying the results? disabled in v1 anyway
log('beforeWrite')
for c,f in clips:
torchvision.utils.save_image(c, 'CLIPped/'+f+'.png', normalize=True)
log('afterWrite')
log('Exit main loop')
speed = (time.time() - run_time)/len(files)
# /main #####################################################################
def statistics(results, full=True):
array = np.array(results).T[1].astype(float)
max = np.max(array)
avg = round(array.mean(), 3)
if (not full): return avg
med = round(np.median(array), 3)
min = array.min()
std = round(array.std(), 4)
cov = round(std/avg*100, 2)
rng = round(max-min, 3)
range = max-min
Stats['Max'][f'MAX: {round(max, 3)}'] = 1
Stats['Max'][f'min: {round(min, 3)}'] = min/max
Stats['Max'][f"CoV: {cov}%"] = std/max
Stats['Max'][f'AVG: {avg}'] = avg/max
Stats['Max'][f'Med: {med}'] = med/max
Stats['Max'][f'M-m: {rng}'] = range/max
# TODO can this be shortened?
if (range == 0):
range = 1
Stats['Max - min'][f'MAX: {round(max, 3)}'] = 1
Stats['Max - min'][f'min: {round(min, 3)}'] = 0
Stats['Max - min'][f"CoV: {cov}%"] = std/range
Stats['Max - min'][f'AVG: {avg}'] = (avg-min)/range
Stats['Max - min'][f'Med: {med}'] = (med-min)/range
Stats['Max - min'][f'M-m: {rng}'] = rng/max
return dict(zip(('AVG','CoV','M-m','min','Med','MAX'), (avg, cov, rng, round(min,3), med, round(max,3))))
def clearStats():
log('clst too many calls?') #
for root, dirs, files in os.walk('.'):
for file in files:
if (file.startswith(('scores','stats'))): # TODO separate folder, names?
os.remove(file)
def scan():
r = ['scores.csv', 'stats.csv']
return [x for x in r if os.path.isfile(x)]
# buggy as fuck
def writeScores(table, files): # => csv_output, stats_output, stats_toggle
statsVisible = False
rows = table and table['data']
log('Entering the scores writer', 'from table change' if files and table else None)
showStats = (gr.update(visible=statsVisible) for x in range(0,2)) # add full return statement?
if files is None:
log('No files, exiting writer')#
resetStatus('from table') # refactor
return [gr.update(value=scan()), *list(showStats)]
######
def writes(tbl):
with open('scores.csv', 'w', newline='') as f: #try tsv, json
writer = csv.writer(f)
log('Actual saving scores', len(tbl['data'])) #
writer.writerow(gr.utils.sanitize_list_for_csv(tbl['headers']))
writer.writerows(gr.utils.sanitize_list_for_csv(tbl['data']))
######
if table and any([x for x in rows[0]]):
if (len(rows) > 1):
statsVisible = len(rows) >= len(files)
if statsVisible:
writes(table)
log('Updating two', 'finished') #
global eta
eta = 0
return [gr.update(value=scan()), *list(showStats)]
else:
statsVisible = False
if (len(files) == 1):
writes(table)
log('updating 1') #
return [gr.update(value=scan()), *list(showStats)]
log('Not ready for writing yet, exiting.', f'total files: {files and len(files)}, but ready rows: {rows and len(rows)}')
return [gr.update(value=scan()), *list(showStats)]
#@title GUI { vertical-output: true, form-width: "50%", display-mode: "both" }
tableQueued_False = False #@param {type:"boolean"}
queueConcurrency_2 = 10 #@param {type:"integer", min:1}
queueUpdateInterval_0 = 0 #@param {type:"slider", min:0, max:10, step:0.2}
#@markdown tableQueued == True + queueConcurrency == 1 guarantees stalling on CPU
#@markdown
#@markdown tableQueued - unknown effect on speed or stability
#@markdown
#@markdown queueConcurrency > 1 - technically should improve speed?
#@markdown
#@markdown queueUpdateInterval - in (0, 1] slows down processing, otherwise seems useless.
#@markdown prevent_thread_lock - keep the "busy cell" behavior of debug mode without it to avoid multiple instances running in parallel;
#@markdown effects on speed & stability unknown
if DEBUG:
import shutil #i doshutilsya
import subprocess
if writeClip: # disabled in v1
for root, dirs, files in os.walk('CLIPped'):
for file in files:
os.remove('CLIPped/'+file)
if DEBUG:
for root, dirs, files in os.walk('../tmp'): #debug only
for dir in dirs:
shutil.rmtree('../tmp/'+dir)
for file in files:
os.remove('../tmp/'+file) #/debug
def resetStatus(msg = 'clear'):
global avgScore
global eta
global speed
avgScore = None
eta = None
speed = 0
log(msg)
if msg != 'clear':
clearStats()
print('\n')
Css = '''
#lbl .output-class {
background-color: transparent;
max-height: 0;
color: transparent;
padding: var(--size-3);
}
#add_img .file-preview .file td:first-child {
overflow-wrap: anywhere;
}
#csv_out .file-preview {
margin-bottom: var(--size-4);
overflow-x: visible;
}
#tbl_out tbody .cell-wrap:first-child {
overflow-wrap: anywhere;
}
button#sbmt:focus:not(:active) {
opacity: 0.75;
pointer-events: none;
}
#mid_col :not(#csv_out) .wrap.default {
opacity: 0!important;
}
'''
def toggleRun(files): # => submit, dataframe, status
global Ready
Ready = files is not None
log('Toggle', Ready)
global canPoll
canPoll = Ready
if not Ready:
if eta:
log('INTERRUPTED at ss remaining (extra)', eta)
resetStatus()
if DEBUG and autoclearLog:
subprocess.call('clear')
print('\r')
clearStats()
return gr.Button.update(variant='primary' if Ready else 'secondary'), None, pollStatus()
# ''', interactive=True''')
log('GUI start')
blks = gr.Blocks(analytics_enabled=False, title="Batch Image Aesthetic Predictor", css=Css)
with blks as demo:
with gr.Accordion('README', open=False):
gr.Markdown(description)
with gr.Row().style(equal_height=False):
with gr.Column(scale=2):
imageinput = gr.Files(file_types=["image"], label="Add images", elem_id="addimg")
submit_button = gr.Button('Submit', variant="secondary", elem_id='sbmt') #TODO interactive
with gr.Column(variant="compact", min_width=256, elem_id="mid_col"):
stats_toggle = gr.Radio(list(Stats.keys()), show_label=True, label='Stats relative to:', value=default_mode, visible=False)
stats_output = gr.Label(label='Stats', visible=False, elem_id="lbl")
csv_output = gr.File( label="Export", elem_id='csv_out' )
with gr.Column(scale=2):
table_output = gr.Dataframe(headers=['Image', 'Score', 'MSE'], max_rows=15, overflow_row_behaviour="paginate", interactive=False, wrap=True, elem_id="tbl_out")
status = gr.Textbox(pollStatus(), max_lines=1, show_label=False, placeholder='Status bar').style(container=False)
status.change(pollStatus, None, status, show_progress= False, queue=False)
tch = table_output.change(writeScores, [table_output, imageinput], [csv_output, stats_output, stats_toggle], preprocess=False, queue= tableQueued_False, show_progress=not isCpu)
stats_toggle.change(switch_stats, [stats_toggle], [stats_output], queue=False, show_progress=False)
run = submit_button.click(batch_predict, imageinput, [stats_toggle, stats_output, table_output, submit_button], queue=True, scroll_to_output=True)
#imageinput.clear(reset, [imageinput], [table_output], queue=False, show_progress=True, preprocess=False)
imageinput.change(toggleRun, imageinput, [submit_button, table_output, status], queue= False, cancels=[run], show_progress=False) #
# try .then()
if DEBUG:
demo.load(lambda: log('load'), queue=not True, show_progress=False)
demo.queue(api_open= not DEBUG, status_update_rate='auto' if queueUpdateInterval_0 == 0 else queueUpdateInterval_0 , concurrency_count=max(queueConcurrency_2, 1))
log('Prelaunch')
demo.launch(debug=DEBUG, quiet=not DEBUG, show_error=True)
#demo.close() |