File size: 15,308 Bytes
2ec72fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin


class Time_Windows():
    def __init__(self, t_initial=1, t_terminal=0, num_windows=4, precision=1./1000) -> None:
        assert t_terminal < t_initial
        time_windows = [ 1.*i/num_windows for i in range(1, num_windows+1)][::-1]
        
        self.window_starts = time_windows                      # [1.0, 0.75, 0.5, 0.25]
        self.window_ends = time_windows[1:] + [t_terminal]     # [0.75, 0.5, 0.25, 0]
        self.precision = precision
    
    def get_window(self, tp):
        idx = 0
        # robust to numerical error; e.g, (0.6+1/10000) belongs to [0.6, 0.3)
        while (tp-0.1*self.precision) <= self.window_ends[idx]: 
            idx += 1
        return self.window_starts[idx], self.window_ends[idx]
    
    def lookup_window(self, timepoint):
        if timepoint.dim() == 0:
            t_start, t_end = self.get_window(timepoint)
            t_start = torch.ones_like(timepoint) * t_start
            t_end = torch.ones_like(timepoint) * t_end
        else:
            t_start = torch.zeros_like(timepoint)
            t_end = torch.zeros_like(timepoint)
            bsz = timepoint.shape[0]
            for i in range(bsz):
                tp = timepoint[i]
                ts, te = self.get_window(tp)
                t_start[i] = ts
                t_end[i] = te
        return t_start, t_end
    
    

@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class PeRFlowSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
    if alpha_transform_type == "cosine":

        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)



class PeRFlowScheduler(SchedulerMixin, ConfigMixin):
    """
    `ReFlowScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
    non-Markovian guidance.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        set_alpha_to_one (`bool`, defaults to `True`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        prediction_type (`str`, defaults to `epsilon`, *optional*)
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,
        beta_end: float = 0.012,
        beta_schedule: str = "scaled_linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        set_alpha_to_one: bool = False,
        prediction_type: str = "epsilon",
        t_noise: float = 1,
        t_clean: float = 0,
        num_time_windows = 4,
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
        # whether we use the final alpha of the "non-previous" one.
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
        
        # # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        self.time_windows = Time_Windows(t_initial=t_noise, t_terminal=t_clean, 
                                        num_windows=num_time_windows,
                                        precision=1./num_train_timesteps)

    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
            `torch.FloatTensor`:
                A scaled input sample.
        """
        return sample


    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
        """
        if num_inference_steps < self.config.num_time_windows:
            num_inference_steps = self.config.num_time_windows
            print(f"### We recommend a num_inference_steps not less than num_time_windows. It's set as {self.config.num_time_windows}.")

        timesteps = []
        for i in range(self.config.num_time_windows):
            if i < num_inference_steps%self.config.num_time_windows:
                num_steps_cur_win = num_inference_steps//self.config.num_time_windows+1
            else:
                num_steps_cur_win = num_inference_steps//self.config.num_time_windows

            t_s = self.time_windows.window_starts[i]
            t_e = self.time_windows.window_ends[i]
            timesteps_cur_win = np.linspace(t_s, t_e, num=num_steps_cur_win, endpoint=False)
            timesteps.append(timesteps_cur_win)
                        
        timesteps = np.concatenate(timesteps)

        self.timesteps = torch.from_numpy(
            (timesteps*self.config.num_train_timesteps).astype(np.int64)
        ).to(device)
            
    def get_window_alpha(self, timestep):
        time_windows = self.time_windows
        num_train_timesteps = self.config.num_train_timesteps
        
        t_win_start, t_win_end = time_windows.lookup_window(timestep / num_train_timesteps)
        t_win_len = t_win_end - t_win_start
        t_interval = timestep / num_train_timesteps - t_win_start # NOTE: negative value

        idx_start = (t_win_start*num_train_timesteps - 1 ).long()
        idx_end = torch.clamp( (t_win_end*num_train_timesteps - 1 ).long(), min=0)
        alpha_cumprod_s_e = self.alphas_cumprod[idx_start] / self.alphas_cumprod[idx_end]        
        gamma_s_e = alpha_cumprod_s_e ** 0.5
        
        return t_win_start, t_win_end, t_win_len, t_interval, gamma_s_e
        
    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        return_dict: bool = True,
    ) -> Union[PeRFlowSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddim.PeRFlowSchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_utils.PeRFlowSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_ddim.PeRFlowSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
        """

        if self.config.prediction_type == "epsilon":
            pred_epsilon = model_output
            t_win_start, t_win_end, t_win_len, t_interval, gamma_s_e = self.get_window_alpha(timestep)
            pred_sample_end = ( sample - (1-t_interval/t_win_len) * ((1-gamma_s_e**2)**0.5) * pred_epsilon ) \
                / ( gamma_s_e + t_interval / t_win_len * (1-gamma_s_e) )
            pred_velocity = (pred_sample_end - sample) / (t_win_end - (t_win_start + t_interval))

        elif self.config.prediction_type == "velocity":
            pred_velocity = model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `velocity`."
            )

        # get dt
        idx = torch.argwhere(torch.where(self.timesteps==timestep, 1,0))
        prev_step = self.timesteps[idx+1] if (idx+1)<len(self.timesteps) else 0
        dt = (prev_step - timestep) / self.config.num_train_timesteps
        dt = dt.to(sample.device, sample.dtype)
           
        prev_sample = sample + dt * pred_velocity

        if not return_dict:
            return (prev_sample,)
        return PeRFlowSchedulerOutput(prev_sample=prev_sample, pred_original_sample=None)


    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device) - 1   # indexing from 0

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps