Spaces:
Running
Running
File size: 13,441 Bytes
684943d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import glob
import logging
import os
import shutil
import subprocess
import cv2
import numpy as np
import torch
from diffusers.models.autoencoders.vq_model import VQModel
from safetensors.torch import load_file
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm
from .auto_encoder import Autoencoder, Autoencoder_dataset
from .pose_estimator import get_pose_estimator
from .utils.loss_utils import cos_loss, l2_loss
from .video_preprocessor import VideoPreprocessor
def extract_with_openseg(cfg):
import tensorflow as tf2
import tensorflow._api.v2.compat.v1 as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
openseg = tf2.saved_model.load(
cfg.feature_extractor.model_path,
tags=[tf.saved_model.tag_constants.SERVING]
)
imgs_path = os.path.join(cfg.pipeline.data_path, "input")
img_names = list(
filter(
lambda x: x.endswith("png") or x.endswith("jpg"), sorted(os.listdir(imgs_path))
)
)
img_list = []
np_image_string_list = []
for img_name in img_names:
img_path = os.path.join(imgs_path, img_name)
image = cv2.imread(img_path)
with tf.gfile.GFile(img_path, 'rb') as f:
np_image_string = np.array([f.read()])
image = torch.from_numpy(image)
img_list.append(image)
np_image_string_list.append(np_image_string)
images = [img_list[i].permute(2, 0, 1)[None, ...] for i in range(len(img_list))]
imgs = torch.cat(images)
save_path = os.path.join(cfg.pipeline.data_path, "lang_features")
os.makedirs(save_path, exist_ok=True)
embed_size = 768
for i, (img, np_image_string) in enumerate(tqdm((zip(imgs, np_image_string_list)), desc="Extracting lang features", total=(len(imgs)))):
text_emb = tf.zeros([1, 1, embed_size])
results = openseg.signatures["serving_default"](
inp_image_bytes=tf.convert_to_tensor(np_image_string[0]),
inp_text_emb=text_emb
)
img_info = results['image_info']
crop_sz = [
int(img_info[0, 0] * img_info[2, 0]),
int(img_info[0, 1] * img_info[2, 1])
]
image_embedding_feat = results['image_embedding_feat'][:, :crop_sz[0], :crop_sz[1]]
img_size = (img.shape[1], img.shape[2])
feat_2d = tf.cast(
tf.image.resize_nearest_neighbor(
image_embedding_feat, img_size, align_corners=True
)[0], dtype=tf.float32
).numpy()
# perform mask-pooling over feat2d
feat_2d = np.transpose(feat_2d, axes=(2, 0, 1))
pooled_feats2d = []
curr_mask = np.load(os.path.join(cfg.pipeline.data_path, "lang_features_dim3", str(i+1).zfill(4)+"_s.npy"))
for color_id in range(-1, curr_mask.max() + 1):
if not feat_2d[:, curr_mask == color_id].shape[-1]:
continue
pooled = feat_2d[:, curr_mask == color_id].mean(axis=-1)
pooled /= np.linalg.norm(pooled)
pooled_feats2d.append(pooled)
pooled_feats2d = np.stack(pooled_feats2d)
np.save(os.path.join(save_path, str(i+1).zfill(4)+".npy"), pooled_feats2d)
class Preprocessor:
def __init__(self, cfg):
self.cfg = cfg
if not cfg.pipeline.skip_video_process:
self.video_processor = VideoPreprocessor(cfg)
else:
self.video_processor = None
if not cfg.pipeline.skip_pose_estimate:
self.pose_estimator = get_pose_estimator(cfg)
else:
self.pose_estimator = None
if not cfg.pipeline.skip_lang_feature_extraction:
# load feature extractor
if cfg.feature_extractor.type == "open-seg":
self.lseg = None
self.sem_ae = Autoencoder()
self.sem_ae.cuda()
elif cfg.feature_extractor.type == "lseg":
self.lseg = LSegFeatureExtractor.from_pretrained(cfg.lseg.model_path)
self.lseg.to(cfg.lseg.device, dtype=torch.float32).eval()
self.sem_ae = VQModel(
in_channels=512,
out_channels=512,
latent_channels=4,
norm_num_groups=2,
block_out_channels=[256, 64, 16],
down_block_types=["DownEncoderBlock2D"] * 3,
up_block_types=["UpDecoderBlock2D"] * 3,
layers_per_block=1,
norm_type="spatial",
num_vq_embeddings=1024,
)
self.sem_ae.load_state_dict(load_file(cfg.ae.model_path))
self.sem_ae.to(cfg.ae.device, dtype=torch.float32).eval()
self.img_transform = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255),
transforms.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True
),
]
)
else:
self.lseg = None
self.sem_ae = None
self.img_transform = None
def generate_lang_features_with_openseg(self):
extract_with_openseg(self.cfg)
logging.info("Done feature extraction.")
num_epochs = 400
os.makedirs(os.path.join(self.cfg.pipeline.data_path, "ckpt"), exist_ok=True)
save_path = os.path.join(self.cfg.pipeline.data_path, "lang_features")
train_dataset = Autoencoder_dataset(save_path)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=512,
shuffle=True,
num_workers=32,
drop_last=False
)
test_loader = DataLoader(
dataset=train_dataset,
batch_size=512,
shuffle=False,
num_workers=32,
drop_last=False
)
optimizer = torch.optim.Adam(self.sem_ae.parameters(), lr=1e-4)
pbar = tqdm(range(num_epochs))
best_eval_loss = 100.0
best_epoch = 0
for epoch in pbar:
self.sem_ae.train()
for idx, feature in enumerate(train_loader):
data = feature.to("cuda")
outputs_dim3 = self.sem_ae.encode(data)
outputs = self.sem_ae.decode(outputs_dim3)
l2loss = l2_loss(outputs, data)
cosloss = cos_loss(outputs, data)
loss = l2loss + cosloss * 0.001
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch > 300:
eval_loss = 0.0
self.sem_ae.eval()
for idx, feature in enumerate(test_loader):
data = feature.to("cuda")
with torch.no_grad():
outputs = self.sem_ae(data)
loss = l2_loss(outputs, data) + cos_loss(outputs, data)
eval_loss += loss * len(feature)
eval_loss = eval_loss / len(train_dataset)
print("eval_loss:{:.8f}".format(eval_loss))
if eval_loss < best_eval_loss:
best_eval_loss = eval_loss
best_epoch = epoch
torch.save(self.sem_ae.state_dict(), os.path.join(self.cfg.pipeline.data_path, "ckpt", "best_ckpt.pth"))
pbar.set_postfix({"Loss": f"{loss.item():.{7}f}"})
pbar.update(1)
print(f"best_epoch: {best_epoch}")
print("best_loss: {:.8f}".format(best_eval_loss))
# compress lang_feats with ae
logging.info("Compresing language features with best ckpt...")
best_state_dict = torch.load(os.path.join(self.cfg.pipeline.data_path, "ckpt", "best_ckpt.pth"), weights_only=False)
self.sem_ae.load_state_dict(best_state_dict)
# check device
orig_lang_feat_names = sorted(glob.glob(os.path.join(save_path, "*.npy")))
dim3_save_path = os.path.join(self.cfg.pipeline.data_path, "lang_features_dim3")
with torch.no_grad():
for idx, orig_lang_feat_name in enumerate(orig_lang_feat_names):
orig_lang_feat = torch.from_numpy(np.load(orig_lang_feat_name)).cuda()
mask = np.load(os.path.join(dim3_save_path, str(idx+1).zfill(4)+"_s.npy"))
# check dtype
lang_feat = self.sem_ae.encode(orig_lang_feat).detach().cpu().numpy()
full_lang_feat = np.zeros((3, mask.shape[0], mask.shape[1]))
curr_id = 0
for color_id in range(-1, mask.max() + 1):
if not mask[mask == color_id].shape[-1]:
continue
full_lang_feat[:, mask == color_id] = lang_feat[curr_id][:, None]
curr_id += 1
np.save(os.path.join(dim3_save_path, str(idx+1).zfill(4)+"_f.npy"), full_lang_feat)
def generate_lang_features_with_lseg(self):
from cogvideox_interpolation.lseg import LSegFeatureExtractor
imgs_path = os.path.join(self.cfg.pipeline.data_path, "input")
img_names = list(
filter(
lambda x: x.endswith("png") or x.endswith("jpg"), os.listdir(imgs_path)
)
)
save_path = os.path.join(self.cfg.pipeline.data_path, "lang_features_dim4")
os.makedirs(save_path, exist_ok=True)
for img_name in tqdm(img_names):
img_path = os.path.join(imgs_path, img_name)
img = cv2.imread(img_path)
resolution = (640, 480)
img = cv2.resize(img, resolution)
frame_embed = self.img_transform(torch.from_numpy(img).permute(2, 0, 1)).to(
self.cfg.lseg.device, dtype=torch.float32
)[None, ...]
lseg_features = self.lseg.extract_features(frame_embed)
if lseg_features.device != self.sem_ae.device:
lseg_features = lseg_features.to("cpu").to(self.sem_ae.device)
z = self.sem_ae.encode(lseg_features).latents # [1, 4, 240, 320]
np.save(
os.path.join(save_path, f"{img_name.split('.')[0]}_f.npy"),
z.detach().cpu().numpy(),
)
def select_valid_data(self):
cfg = self.cfg
curr_data_path = cfg.pipeline.data_path
raw_data_path = os.path.join(curr_data_path, "raw")
os.makedirs(raw_data_path, exist_ok=True)
dirs_to_move = ["camera", "input", "lang_features_dim3", "normal"]
orig_view_nums = len(os.listdir(os.path.join(curr_data_path, "camera")))
indexs = np.linspace(0, orig_view_nums-1, cfg.pipeline.chunk_num * cfg.pipeline.keep_num_per_chunk)
indexs = indexs.astype(np.int32).tolist()
cfg.pipeline.selected_idxs = indexs
for dir_to_move in dirs_to_move:
shutil.move(os.path.join(curr_data_path, dir_to_move), raw_data_path)
src_dir = os.path.join(raw_data_path, dir_to_move)
tar_dir = os.path.join(curr_data_path, dir_to_move)
os.makedirs(tar_dir, exist_ok=True)
file_lst = sorted(os.listdir(src_dir))
file_suffix = file_lst[0].split(".")[-1]
if dir_to_move == "lang_features_dim3":
f_file_lst = [file_lst[2 * idx] for idx in cfg.pipeline.selected_idxs]
s_file_lst = [file_lst[2 * idx + 1] for idx in cfg.pipeline.selected_idxs]
for file_idx in range(len(f_file_lst)):
shutil.copy(
os.path.join(src_dir, f_file_lst[file_idx]),
os.path.join(tar_dir, f"{file_idx+1:04d}_f.{file_suffix}"),
)
shutil.copy(
os.path.join(src_dir, s_file_lst[file_idx]),
os.path.join(tar_dir, f"{file_idx+1:04d}_s.{file_suffix}"),
)
else:
file_lst = [file_lst[idx] for idx in cfg.pipeline.selected_idxs]
for file_idx, file_name in enumerate(file_lst):
shutil.copy(
os.path.join(src_dir, file_name),
os.path.join(tar_dir, f"{file_idx+1:04d}.{file_suffix}"),
)
def preprocess(self):
if not self.cfg.pipeline.skip_video_process:
logging.info("Processing input videos...")
self.video_processor.video_process()
if not self.cfg.pipeline.skip_pose_estimate:
logging.info("Estimating poses...")
self.pose_estimator.get_poses()
if not self.cfg.pipeline.skip_lang_feature_extraction:
logging.info("Generating language features...")
if self.cfg.feature_extractor.type == "lseg":
self.generate_lang_features_with_lseg()
elif self.cfg.feature_extractor.type == "open-seg":
self.generate_lang_features_with_openseg()
if self.cfg.pipeline.selection:
logging.info("Selecting views with higher confidence...")
self.select_valid_data()
logging.info("Done all preprocessing!")
|