File size: 13,441 Bytes
684943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import glob
import logging
import os
import shutil
import subprocess

import cv2
import numpy as np
import torch
from diffusers.models.autoencoders.vq_model import VQModel
from safetensors.torch import load_file
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm

from .auto_encoder import Autoencoder, Autoencoder_dataset
from .pose_estimator import get_pose_estimator
from .utils.loss_utils import cos_loss, l2_loss
from .video_preprocessor import VideoPreprocessor


def extract_with_openseg(cfg):
    import tensorflow as tf2
    import tensorflow._api.v2.compat.v1 as tf
    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:
        try:
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)
        except RuntimeError as e:
            print(e)

    openseg = tf2.saved_model.load(
        cfg.feature_extractor.model_path, 
        tags=[tf.saved_model.tag_constants.SERVING]
    )
    imgs_path = os.path.join(cfg.pipeline.data_path, "input")
    img_names = list(
        filter(
            lambda x: x.endswith("png") or x.endswith("jpg"), sorted(os.listdir(imgs_path))
        )
    )
    img_list = []
    np_image_string_list = []
    for img_name in img_names:
        img_path = os.path.join(imgs_path, img_name)
        image = cv2.imread(img_path)
        with tf.gfile.GFile(img_path, 'rb') as f:
            np_image_string = np.array([f.read()])

        image = torch.from_numpy(image)
        img_list.append(image)
        np_image_string_list.append(np_image_string)

    images = [img_list[i].permute(2, 0, 1)[None, ...] for i in range(len(img_list))]
    imgs = torch.cat(images)
    save_path = os.path.join(cfg.pipeline.data_path, "lang_features")
    os.makedirs(save_path, exist_ok=True)
    embed_size = 768
    for i, (img, np_image_string) in enumerate(tqdm((zip(imgs, np_image_string_list)), desc="Extracting lang features", total=(len(imgs)))):
        text_emb = tf.zeros([1, 1, embed_size])
        results = openseg.signatures["serving_default"](
            inp_image_bytes=tf.convert_to_tensor(np_image_string[0]),
            inp_text_emb=text_emb
        )
        img_info = results['image_info']
        crop_sz = [
            int(img_info[0, 0] * img_info[2, 0]),
            int(img_info[0, 1] * img_info[2, 1])
        ]
        image_embedding_feat = results['image_embedding_feat'][:, :crop_sz[0], :crop_sz[1]]
        img_size = (img.shape[1], img.shape[2])
        feat_2d = tf.cast(
            tf.image.resize_nearest_neighbor(
                image_embedding_feat, img_size, align_corners=True
            )[0], dtype=tf.float32
        ).numpy()
        # perform mask-pooling over feat2d
        feat_2d = np.transpose(feat_2d, axes=(2, 0, 1))
        pooled_feats2d = []
        curr_mask = np.load(os.path.join(cfg.pipeline.data_path, "lang_features_dim3", str(i+1).zfill(4)+"_s.npy"))
        for color_id in range(-1, curr_mask.max() + 1):
            if not feat_2d[:, curr_mask == color_id].shape[-1]:
                continue
            pooled = feat_2d[:, curr_mask == color_id].mean(axis=-1)
            pooled /= np.linalg.norm(pooled)
            pooled_feats2d.append(pooled)

        pooled_feats2d = np.stack(pooled_feats2d)
        np.save(os.path.join(save_path, str(i+1).zfill(4)+".npy"), pooled_feats2d)

class Preprocessor:
    def __init__(self, cfg):
        self.cfg = cfg
        if not cfg.pipeline.skip_video_process:
            self.video_processor = VideoPreprocessor(cfg)
        else:
            self.video_processor = None

        if not cfg.pipeline.skip_pose_estimate:
            self.pose_estimator = get_pose_estimator(cfg)
        else:
            self.pose_estimator = None

        if not cfg.pipeline.skip_lang_feature_extraction:
            # load feature extractor
            if cfg.feature_extractor.type == "open-seg":
                self.lseg = None
                self.sem_ae = Autoencoder()
                self.sem_ae.cuda()

            elif cfg.feature_extractor.type == "lseg":
                self.lseg = LSegFeatureExtractor.from_pretrained(cfg.lseg.model_path)
                self.lseg.to(cfg.lseg.device, dtype=torch.float32).eval()

                self.sem_ae = VQModel(
                    in_channels=512,
                    out_channels=512,
                    latent_channels=4,
                    norm_num_groups=2,
                    block_out_channels=[256, 64, 16],
                    down_block_types=["DownEncoderBlock2D"] * 3,
                    up_block_types=["UpDecoderBlock2D"] * 3,
                    layers_per_block=1,
                    norm_type="spatial",
                    num_vq_embeddings=1024,
                )

                self.sem_ae.load_state_dict(load_file(cfg.ae.model_path))
                self.sem_ae.to(cfg.ae.device, dtype=torch.float32).eval()
                self.img_transform = transforms.Compose(
                    [
                        transforms.Lambda(lambda x: x / 255),
                        transforms.Normalize(
                            mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True
                        ),
                    ]
                )

        else:
            self.lseg = None
            self.sem_ae = None
            self.img_transform = None

        
    def generate_lang_features_with_openseg(self):
        extract_with_openseg(self.cfg)
        logging.info("Done feature extraction.")

        num_epochs = 400
        os.makedirs(os.path.join(self.cfg.pipeline.data_path, "ckpt"), exist_ok=True)
        save_path = os.path.join(self.cfg.pipeline.data_path, "lang_features")
        train_dataset = Autoencoder_dataset(save_path)
        train_loader = DataLoader(
            dataset=train_dataset,
            batch_size=512,
            shuffle=True,
            num_workers=32,
            drop_last=False
        )
        test_loader = DataLoader(
            dataset=train_dataset,
            batch_size=512,
            shuffle=False,
            num_workers=32,
            drop_last=False
        )
        optimizer = torch.optim.Adam(self.sem_ae.parameters(), lr=1e-4)
        pbar = tqdm(range(num_epochs))
        best_eval_loss = 100.0
        best_epoch = 0

        for epoch in pbar:
            self.sem_ae.train()
            for idx, feature in enumerate(train_loader):
                data = feature.to("cuda")
                outputs_dim3 = self.sem_ae.encode(data)
                outputs = self.sem_ae.decode(outputs_dim3)

                l2loss = l2_loss(outputs, data)
                cosloss = cos_loss(outputs, data)
                loss = l2loss + cosloss * 0.001

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
            if epoch > 300:
                eval_loss = 0.0
                self.sem_ae.eval()
                for idx, feature in enumerate(test_loader):
                    data = feature.to("cuda")
                    with torch.no_grad():
                        outputs = self.sem_ae(data)
                    loss = l2_loss(outputs, data) + cos_loss(outputs, data)
                    eval_loss += loss * len(feature)
                eval_loss = eval_loss / len(train_dataset)
                print("eval_loss:{:.8f}".format(eval_loss))
                if eval_loss < best_eval_loss:
                    best_eval_loss = eval_loss
                    best_epoch = epoch
                    torch.save(self.sem_ae.state_dict(), os.path.join(self.cfg.pipeline.data_path, "ckpt", "best_ckpt.pth"))
            pbar.set_postfix({"Loss": f"{loss.item():.{7}f}"})
            pbar.update(1)

        print(f"best_epoch: {best_epoch}")
        print("best_loss: {:.8f}".format(best_eval_loss))
        # compress lang_feats with ae
        logging.info("Compresing language features with best ckpt...")
        best_state_dict = torch.load(os.path.join(self.cfg.pipeline.data_path, "ckpt", "best_ckpt.pth"), weights_only=False)
        self.sem_ae.load_state_dict(best_state_dict)
        # check device
        orig_lang_feat_names = sorted(glob.glob(os.path.join(save_path, "*.npy")))
        dim3_save_path = os.path.join(self.cfg.pipeline.data_path, "lang_features_dim3")
        with torch.no_grad():
            for idx, orig_lang_feat_name in enumerate(orig_lang_feat_names):
                orig_lang_feat = torch.from_numpy(np.load(orig_lang_feat_name)).cuda()
                mask = np.load(os.path.join(dim3_save_path, str(idx+1).zfill(4)+"_s.npy"))
                # check dtype
                lang_feat = self.sem_ae.encode(orig_lang_feat).detach().cpu().numpy()
                full_lang_feat = np.zeros((3, mask.shape[0], mask.shape[1]))
                curr_id = 0
                for color_id in range(-1, mask.max() + 1):
                    if not mask[mask == color_id].shape[-1]:
                        continue
                    full_lang_feat[:, mask == color_id] = lang_feat[curr_id][:, None]
                    curr_id += 1
                np.save(os.path.join(dim3_save_path, str(idx+1).zfill(4)+"_f.npy"), full_lang_feat)

    def generate_lang_features_with_lseg(self):
        from cogvideox_interpolation.lseg import LSegFeatureExtractor
        imgs_path = os.path.join(self.cfg.pipeline.data_path, "input")
        img_names = list(
            filter(
                lambda x: x.endswith("png") or x.endswith("jpg"), os.listdir(imgs_path)
            )
        )
        save_path = os.path.join(self.cfg.pipeline.data_path, "lang_features_dim4")
        os.makedirs(save_path, exist_ok=True)
        for img_name in tqdm(img_names):
            img_path = os.path.join(imgs_path, img_name)
            img = cv2.imread(img_path)
            resolution = (640, 480)
            img = cv2.resize(img, resolution)
            frame_embed = self.img_transform(torch.from_numpy(img).permute(2, 0, 1)).to(
                self.cfg.lseg.device, dtype=torch.float32
            )[None, ...]
            lseg_features = self.lseg.extract_features(frame_embed)
            if lseg_features.device != self.sem_ae.device:
                lseg_features = lseg_features.to("cpu").to(self.sem_ae.device)

            z = self.sem_ae.encode(lseg_features).latents  # [1, 4, 240, 320]
            np.save(
                os.path.join(save_path, f"{img_name.split('.')[0]}_f.npy"),
                z.detach().cpu().numpy(),
            )

    def select_valid_data(self):
        cfg = self.cfg
        curr_data_path = cfg.pipeline.data_path
        raw_data_path = os.path.join(curr_data_path, "raw")
        os.makedirs(raw_data_path, exist_ok=True)
        dirs_to_move = ["camera", "input", "lang_features_dim3", "normal"]
        
        orig_view_nums = len(os.listdir(os.path.join(curr_data_path, "camera")))
        indexs = np.linspace(0, orig_view_nums-1, cfg.pipeline.chunk_num * cfg.pipeline.keep_num_per_chunk)
        indexs = indexs.astype(np.int32).tolist()
        cfg.pipeline.selected_idxs = indexs

        for dir_to_move in dirs_to_move:
            shutil.move(os.path.join(curr_data_path, dir_to_move), raw_data_path)
            src_dir = os.path.join(raw_data_path, dir_to_move)
            tar_dir = os.path.join(curr_data_path, dir_to_move)
            os.makedirs(tar_dir, exist_ok=True)
            file_lst = sorted(os.listdir(src_dir))
            file_suffix = file_lst[0].split(".")[-1]
            if dir_to_move == "lang_features_dim3":
                f_file_lst = [file_lst[2 * idx] for idx in cfg.pipeline.selected_idxs]
                s_file_lst = [file_lst[2 * idx + 1] for idx in cfg.pipeline.selected_idxs]
                for file_idx in range(len(f_file_lst)):
                    shutil.copy(
                        os.path.join(src_dir, f_file_lst[file_idx]),
                        os.path.join(tar_dir, f"{file_idx+1:04d}_f.{file_suffix}"),
                    )
                    shutil.copy(
                        os.path.join(src_dir, s_file_lst[file_idx]),
                        os.path.join(tar_dir, f"{file_idx+1:04d}_s.{file_suffix}"),
                    )
            else:
                file_lst = [file_lst[idx] for idx in cfg.pipeline.selected_idxs]
                for file_idx, file_name in enumerate(file_lst):
                    shutil.copy(
                        os.path.join(src_dir, file_name),
                        os.path.join(tar_dir, f"{file_idx+1:04d}.{file_suffix}"),
                    )

    def preprocess(self):
        if not self.cfg.pipeline.skip_video_process:
            logging.info("Processing input videos...")
            self.video_processor.video_process()

        if not self.cfg.pipeline.skip_pose_estimate:
            logging.info("Estimating poses...")
            self.pose_estimator.get_poses()

        if not self.cfg.pipeline.skip_lang_feature_extraction:
            logging.info("Generating language features...")
            if self.cfg.feature_extractor.type == "lseg":
                self.generate_lang_features_with_lseg()
            elif self.cfg.feature_extractor.type == "open-seg":
                self.generate_lang_features_with_openseg()

        if self.cfg.pipeline.selection:
            logging.info("Selecting views with higher confidence...")
            self.select_valid_data()

        logging.info("Done all preprocessing!")