File size: 39,338 Bytes
5eb4102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a645195
5eb4102
 
 
 
 
a645195
 
 
 
 
 
 
 
 
8671130
 
f90b079
8671130
a645195
23b6f13
 
8671130
 
 
 
f90b079
 
 
a645195
23b6f13
a645195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eb4102
a645195
 
 
 
 
 
5eb4102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7399415
5eb4102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7399415
5eb4102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7399415
5eb4102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b2c5d3
5eb4102
fdcc9f0
5eb4102
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
#/* DARNA.HI
# * Copyright (c) 2023 Seapoe1809   <https://github.com/seapoe1809>
# * Copyright (c) 2023 pnmeka   <https://github.com/pnmeka>
# * 
# *
# *   This program is free software: you can redistribute it and/or modify
# *   it under the terms of the GNU General Public License as published by
# *   the Free Software Foundation, either version 3 of the License, or
# *   (at your option) any later version.
# *
# *   This program is distributed in the hope that it will be useful,
# *   but WITHOUT ANY WARRANTY; without even the implied warranty of
# *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# *   GNU General Public License for more details.
# *
# *   You should have received a copy of the GNU General Public License
# *   along with this program. If not, see <http://www.gnu.org/licenses/>.
# */
#uses chromaminer to chunk and embed and then uses function to extract relevant component
import os, subprocess
import re
import json
import random
import requests
import gradio as gr
import chromadb
import sqlite3
import base64
from io import BytesIO
from datetime import datetime
from fpdf import FPDF
import threading
from threading import local
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter
import tempfile
from PIL import Image
import io
from ollama import AsyncClient
import asyncio
####NEW
#install pytesseract
#install pdf2image pip install reportlab PyPDF2 nltk wordcloud unidecode
#pdfplumber ollama

#from transformers import pipeline
#set model
model="mistral-nemo"
directory = ""
folderpath= ""
basic_info=""




conversation_memory = []
"""
async def chat(messages):

     async for part in await AsyncClient().chat(model=f'{model}', messages=messages, stream=True):
         chunk=part['message']['content']
         yield chunk
"""

###########HUGGINGFACE DEMO
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import spaces

# Initialize device and model
HF_TOKEN = os.environ.get("HF_TOKEN")
MODEL = "mistralai/Mistral-Nemo-Instruct-2407"

device = "cuda" if torch.cuda.is_available() else "cpu"


# Authenticate if needed
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    ignore_mismatched_sizes=True)



async def chat(messages):
    # Convert messages to the format required for the model
    conversation = [{"role": "user", "content": msg['content']} if msg['role'] == "user" 
                    else {"role": "assistant", "content": msg['content']} for msg in messages]

    input_text = tokenizer.apply_chat_template(conversation, tokenize=False)
    inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)

    # Define a streamer to handle text generation output
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    
    # Arguments for generating the response
    generate_kwargs = dict(
        input_ids=inputs, 
        max_new_tokens=1024,  # Adjust max tokens as needed
        do_sample=True,
        top_p=0.9,  # Sampling parameters
        top_k=50,
        temperature=0.7,
        streamer=streamer,
        repetition_penalty=1.2,
        pad_token_id=tokenizer.pad_token_id
    )

    # Generate text in a separate thread
    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()

    # Initialize full response and yield each part
    full_response = ""
    for new_text in streamer:
        full_response += new_text
        yield full_response
###########

#this truncates the words for use by Chroma to build context
def truncate_words(documents):
    truncated_documents = []
    for doc in documents:
        doc=str(doc)
        words = doc.split()[:300]  # Truncate to 300 words
        truncated_documents.append(' '.join(words))
    return truncated_documents

def generate_context_and_sources(
    query: str, 
    collection_name: str = "documents_collection", 
    persist_directory: str = "chroma_storage"
) -> (str, str):
    print(persist_directory)
    context, sources = "No data available", "No sources available."
    try:
        # Check if persist_directory exists; if not
        if not os.path.exists(persist_directory):
            print(f"Directory '{persist_directory}' does not exist. Skipping.")
            return context, sources

        chroma_client = chromadb.PersistentClient(path=persist_directory)
        collection = chroma_client.get_collection(name=collection_name)

        results = collection.query(query_texts=[query], n_results=3, include=["documents", "metadatas"])
        sources = "\n".join(
            [
                f"{result.get('filename', 'Unknown filename')}: batch {result.get('batch_number', 'Unknown batch')}"
                for result in results["metadatas"][0]  # type: ignore
            ]
        )
        truncated_documents = truncate_words(results["documents"])
        context = "".join(truncated_documents)

    except Exception as e:
        print(f"Error accessing collection or processing query: {e}")
    return context, sources

#set global directory
def set_user_directory(request: gr.Request):
    global directory
    referer= request.headers.get('referer')
    if "user=1" in referer:
        # Admin user
        directory = "../Health_files/ocr_files/Darna_tesseract/"
    elif "user=2" in referer:
        # Non-admin user
        directory = "../Health_files2/ocr_files/Darna_tesseract/"
    else:
        # Handle unexpected user types
        directory = "/"
    print(f"Current ocr directory: {directory}")
    
def set_user_health_files_directory(request: gr.Request):
    global folderpath
    referer= request.headers.get('referer')
    if "user=1" in referer:
        # Admin user
        folderpath = "../Health_files/"
    elif "user=2" in referer:
        # Non-admin user
        folderpath = "../Health_files2/"
    else:
        # Handle unexpected user types
        folderpath = "/"
    print(f"Current folderpath: {folderpath}")
    
       
#function to ananlyze the input query using re and make some assessment on where to get context
def analyze_query(query, directory):
    #pattern for keyword
    darna_pattern = r'(?:darnahi|darna|server|hello)\s*[:=]?\s*'
    darna_match = re.search(darna_pattern, query, re.IGNORECASE)
    darna_value = darna_match.group().strip() if darna_match else None
    
    med_pattern = r'(?:meds|medication|medications|medicine|medicine|drug|drugs)\s*[:=]?\s*'
    med_match = re.search(med_pattern, query, re.IGNORECASE)
    med_value = med_match.group().strip() if med_match else None
    
    summary_pattern = r'(?:medical|clinical|advice|advise|weight|diet)\s*[:=]?\s*'
    summary_match = re.search(summary_pattern, query, re.IGNORECASE)
    summary_value = summary_match.group().strip() if summary_match else None
    
    past_medical_history_pattern = r'(?:history|procedure|procedures|surgery|pastmedical|pmh|past-medical|past-history)\s*[:=]?\s*'
    past_medical_history_match = re.search(past_medical_history_pattern, query, re.IGNORECASE)
    past_medical_history_value = past_medical_history_match.group().strip() if past_medical_history_match else None
    
    xmr_pattern = r'(?:monero|xmr|crypto|cryptocurrency|privacy|XMR|MOnero)\s*[:=]?\s*'
    xmr_match = re.search(xmr_pattern, query, re.IGNORECASE)
    xmr_value = xmr_match.group().strip() if xmr_match else None
    
    json_file_path= f'{directory}/wordcloud_summary.json'
    
    try:
        with open(json_file_path, 'r', encoding='utf-8') as file:
                existing_data = json.load(file)
    except FileNotFoundError:
        existing_data = {}
    
    result = ""
    if darna_value is not None:
        print(darna_value)
        key='darnahi'
        result += existing_data.get(key, " ")[:150]
    if med_value is not None:
        print(med_value)
        key = 'darnahi_medications'
        result += existing_data.get(key, " ")[:350]
    if summary_value is not None:
        print(summary_value)
        key = 'darnahi_summary'
        result += existing_data.get(key, "No data found for 'summary' key.")[:350]
    if past_medical_history_value is not None:
        print(past_medical_history_value)
        key = 'darnahi_past_medical_history'
        result += existing_data.get(key, " ")[:150]  
    if xmr_value is not None:
        print(xmr_value)
        key = 'darnahi_xmr'
        result += existing_data.get(key, " ")[:150]

     # Check if no pattern matched
    if not (darna_match or med_match or summary_match or xmr_match or past_medical_history_match):
    
        collection_name="documents_collection"
        context, sources = generate_context_and_sources(query, collection_name, os.path.join(directory, 'chroma_storage'))

        print(context, sources)
        result = context[:150]
    if result is None:
        result={''}
   
    print(result)
    return result


    
#generate a chat function using the query and context
async def my_function(query, request: gr.Request, chat_history):
    #pass userID
    global conversation_memory    
    history ="<history>\n".join(conversation_memory)
    if len(history) > 300:
        history = history[-400:]
    
    print(history)
    referer= request.headers.get('referer')
    if "user=2" in referer:
        #non admin user
        directory="../Health_files2/ocr_files/Darna_tesseract/"
        print(directory)
    elif "user=1" in referer:
        #admin
        directory="../Health_files/ocr_files/Darna_tesseract/"
        print(directory)
    else:
        directory="/"
        print("default dir")
        
    #chroma rag
    context=analyze_query(query, directory)
    context=f'<context>{context}</context>'

    messages = [
        {"role": "user", "content": "You are Darnabot. End with a followup"},
        {"role": "assistant", "content": "I am 'Darnabot', AI health assistant with domain expertise. How can I help?"},
        {"role": "user", "content": f"'Darnabot' answer query: {query} using context: {context}. Also here is history of previous conversation with user but ignore if not relevant to query: {history}"},
        ]

    
    
    full_response=""
    async for content in chat(messages):
        full_response += content
        yield chat_history + [(query, full_response)]
        

    conversation_memory.append(f"<history> {full_response}</history>")
    conversation_memory = conversation_memory[-4:]

def clear_conversation():
    global conversation_memory
    conversation_memory = []
    gr.ClearButton([msg, chatbot])
    return "", None

################################
"""
#run ai to analyze records
#from analyze  import *
import logging
import json
import subprocess
from typing import List, Tuple

def stepwise_error_handling_analyze(deidentify_words, folderpath: str, ocr_files: str, age: int, sex: str) -> List[Tuple[str, str]]:
    logging.basicConfig(filename='error_log.txt', level=logging.ERROR,
                        format='%(asctime)s - %(levelname)s - %(message)s')
    
    steps = [
        ("Extract and write LForms data", lambda: extract_and_write_lforms_data(folderpath)),
        ("Process OCR files", lambda: process_ocr_files(ocr_files)),
        ("Collate images", lambda: collate_images(ocr_files, f"{ocr_files}/Darna_tesseract")),
        ("Deidentify records", deidentify_records(ocr_files, deidentify_words)),
        ("Generate recommendations", lambda: generate_recommendations(folderpath, age=age, sex=sex)),
        ("Process PDF files", lambda: process_pdf_files(ocr_files)),
        ("Process directory summary", lambda: process_directory_summary(ocr_files, ['HPI', 'history', 'summary'])),
        ("Create wordcloud", lambda: preprocess_and_create_wordcloud(process_directory_summary(ocr_files, ['HPI', 'history', 'summary']), f'{ocr_files}/Darna_tesseract/')),
        ("Process directory meds", lambda: process_directory_meds(ocr_files, ['medications', 'MEDICATIONS:', 'medicine', 'meds'])),
        ("Load screening text", lambda: load_text_from_json_screening(f'{ocr_files}/Darna_tesseract/combined_output.json', ['RECS', 'RECOMMENDATIONS'])),
        ("Process directory PMH", lambda: process_directory_pmh(ocr_files, ['PMH', 'medical', 'past medical history', 'surgical', 'past'])),
        ("Generate wordcloud summary", lambda: wordcloud_summary(
            ("darnahi_summary", "darnahi_past_medical_history", "darnahi_medications", "darnahi_screening"),
            (process_directory_summary(ocr_files, ['HPI', 'history', 'summary']),
             process_directory_pmh(ocr_files, ['PMH', 'medical', 'past medical history', 'surgical', 'past']),
             process_directory_meds(ocr_files, ['medications', 'MEDICATIONS:', 'medicine', 'meds']),
             load_text_from_json_screening(f'{ocr_files}/combined_output.json', ['RECS', 'RECOMMENDATIONS'])),
            f'{ocr_files}/Darna_tesseract/'
        )),
        #("Chromadb embed", lambda: chromadb_embed(ocr_files)),
        #("Clean up directory", lambda: subprocess.run(f'find {ocr_files} -maxdepth 1 -type f -exec rm {{}} +', shell=True))
    ]
    
    results = []
    
    for step_name, step_function in steps:
        try:
            step_function()
            results.append((step_name, "Success"))
        except Exception as e:
            error_message = f"Error in {step_name}: {str(e)}"
            logging.error(error_message)
            results.append((step_name, f"Error: {str(e)}"))
    
    return results

def extract_and_write_lforms_data(folderpath: str):
    with open(f'{folderpath}/summary/chart.json', 'r') as file:
        json_data = json.load(file)
        
    extracted_info = extract_lforms_data(json.dumps(json_data))
    json_output = json.dumps(extracted_info, indent=4)
    write_text_to_pdf(folderpath, str(extracted_info))
    with open(f'{folderpath}/ocr_files/fhir_output.json', 'w', encoding='utf-8') as f:
        f.write(json_output)

"""

def extract_lforms_data(json_data):
    if isinstance(json_data, str):
        data = json.loads(json_data)
    else:
        data = json_data

    extracted_info = {
        "date_of_birth": None,
        "sex": None,
        "allergies": [],
        "past_medical_history": [],
        "medications": []
    }

    for item in data.get("items", []):
        if item.get("question") == "ABOUT ME":
            for subitem in item.get("items", []):
                if subitem.get("question") == "DATE OF BIRTH":
                    extracted_info["date_of_birth"] = subitem.get("value")
                elif subitem.get("question") == "BIOLOGICAL SEX":
                    extracted_info["sex"] = subitem.get("value", {}).get("text")
        
        elif item.get("question") == "ALLERGIES":
            for allergy_item in item.get("items", []):
                if allergy_item.get("question") == "Allergies and Other Dangerous Reactions":
                    for subitem in allergy_item.get("items", []):
                        if subitem.get("question") == "Name" and "value" in subitem:
                            extracted_info["allergies"].append(subitem["value"]["text"])
        
        elif item.get("question") == "PAST MEDICAL HISTORY:":
            for condition_item in item.get("items", []):
                if condition_item.get("question") == "PAST MEDICAL HISTORY" and "value" in condition_item:
                    condition = extract_condition(condition_item)
                    if condition:
                        extracted_info["past_medical_history"].append(condition)                  
        
        elif item.get("question") == "MEDICATIONS:":
            medication = {}
            for med_item in item.get("items", []):
                if med_item.get("question") == "MEDICATIONS":
                    medication["name"] = extract_med_value(med_item)
                elif med_item.get("question") == "Strength":
                    medication["strength"] = extract_med_value(med_item)
                elif med_item.get("question") == "Instructions":
                    medication["instructions"] = extract_med_value(med_item)
            if medication:
                extracted_info["medications"].append(medication)

    return extracted_info


def extract_condition(condition_item):
    if isinstance(condition_item.get("value"), dict):
        return condition_item["value"].get("text", "")
    elif isinstance(condition_item.get("value"), str):
        return condition_item["value"]
    return ""
    
def extract_med_value(med_item):
    if "value" not in med_item:
        return ""
    value = med_item["value"]
    if isinstance(value, str):
        return value
    elif isinstance(value, dict):
        return value.get("text", "")
    return ""
##run analyze located in ../dir
def analyze(request: gr.Request, deidentify_words):
    set_user_health_files_directory(request)
    if not folderpath:
        print("folderpath value is empty. Skipping.")
        return
    # Set up environment variables
    env_vars = os.environ.copy()
    env_vars['FOLDERPATH'] = folderpath
    if deidentify_words:
        content = f"\nignore_words = '{deidentify_words}'\n"
        file_path_variables2 = "../variables/variables2.py"
        try:
            with open(file_path_variables2, 'a') as file:
                file.write(content)
            print(f"Successfully appended deidentify_words to {file_path_variables2}")
        except IOError as e:
            error_message = f"IOError writing to variables2.py: {str(e)}"
            print(error_message)
            return error_message
        except Exception as e:
            error_message = f"Unexpected error writing to variables2.py: {str(e)}"
            print(error_message)
            return error_message
    # Get the absolute path to the current script's directory
    current_dir = os.path.dirname(os.path.abspath(__file__))

    # Set up the paths
    venv_dir = os.path.abspath(os.path.join(current_dir, '..', 'darnavenv'))
    venv_python = os.path.join(venv_dir, 'bin', 'python3.10')
    analyze_script = os.path.abspath(os.path.join(current_dir, '..', 'analyze.py'))

    command = [venv_python, analyze_script]

    try:
        result = subprocess.run(command, env=env_vars, check=True, text=True, capture_output=True)
        print("Running Analyzer output:", result.stdout)
        return "🟢 Analysis completed successfully"
    except subprocess.CalledProcessError as e:
        print("Error running analyze.py:", e)
        print("Error output:", e.stderr)
    
        
##fetch age/sex in analyze module    
def fetch_age_sex(request: gr.Request):
    set_user_health_files_directory(request)
    if not folderpath:
        print("Directory value is empty. Skipping.")
        return None, None, gr.update(visible=False), gr.update(visible=False)
    
    ocr_files = f"{folderpath}/ocr_files"
    try:
        with open(f'{folderpath}/summary/chart.json', 'r') as file:
            json_data = json.load(file)
        
        extracted_info = extract_lforms_data(json.dumps(json_data))
        sex = extracted_info.get('sex', None)
        dob_str = extracted_info.get('date_of_birth', None)
        
        age = None
        if dob_str is not None:
            try:
                dob = datetime.strptime(dob_str, '%Y-%m-%d')
                today = datetime.now()
                age = today.year - dob.year
                
                # Adjust age if birthday hasn't occurred this year
                if (today.month, today.day) < (dob.month, dob.day):
                    age -= 1
            except ValueError as e:
                print(f"Error parsing date: {e}")
        
        # Check if both age and sex are not None
        if age is not None and sex is not None:
            content = f"age = '{age}'\nsex = '{sex}'\n"
            file_path_variables2 = f"../variables/variables2.py"
            try:
                with open(file_path_variables2, 'w') as file:
                    file.write(content)
            except Exception as e:
                print(f"Error writing to variables2.py: {str(e)}")
                return None, None, gr.update(visible=False), gr.update(visible=False)
           
            return f"Age: {age}\n Sex: {sex}\n", "🟢 Ready to analyze", gr.update(visible=True), gr.update(visible=True)
        else:
            return None, "🔴 Please update your age and sex in Darnahi Chartit", gr.update(visible=False), gr.update(visible=False)
            
    except Exception as e:
        return None, f"This is a demo version. Download to access full features. : {str(e)}", gr.update(visible=False), gr.update(visible=False)




    
####AI File server
def list_files(directory):
    files = []
    try:
        # List files in the main directory
        files.extend([f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))])
        
        # List files in the AI wordcloud subdirectory
        wordcloud_dir = os.path.join(directory, "wordclouds")
        if os.path.isdir(wordcloud_dir):
            wordcloud_files = [os.path.join("wordclouds", f) for f in os.listdir(wordcloud_dir) if os.path.isfile(os.path.join(wordcloud_dir, f))]
            files.extend(wordcloud_files)
        
        return files
    except OSError as e:
        #print(f"Pick a directory to list {directory}: {e}")
        return []

def display_file(filename):
    if not filename or isinstance(filename, gr.components.Dropdown):
        return None, None

    try:
        file_path = os.path.join(directory, filename)
        if os.path.exists(file_path):
            if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')):
                return None, file_path
            else:
                with open(file_path, 'r') as file:
                    content = file.read()
                return content, None
        else:
            print(f"File not found: {file_path}")
            return None, None
    except Exception as e:
        print(f"Error displaying file {filename}: {e}")
        return None, None

def refresh_file_list(request: gr.Request):
    #checks for RAG dir and also refreshes list of files
    set_user_directory(request)
    
    file_choices = list_files(directory)
    
    if os.path.isdir(os.path.join(directory, "chroma_storage")):
        status = "🟢 RAG database successfully setup for Darnabot User"
    else:
        status = "🔴 RAG database needs to be set up for Darnabot User"
    
    return gr.Dropdown(choices=file_choices), status
    
def update_display(filename):
    if isinstance(filename, gr.components.Dropdown):
        filename = filename.value  
    if not filename:
        return gr.update(value="No file selected", visible=True), gr.update(value=None, visible=False)
    
    content, image_path = display_file(filename)
    if image_path:
        return gr.update(value=None, visible=False), gr.update(value=image_path, visible=True)
    elif content is not None:
        return gr.update(value=content, visible=True), gr.update(value=None, visible=False)
    else:
        return gr.update(value="Error displaying file", visible=True), gr.update(value=None, visible=False)


##SYMPTOM LOGGER

# Create a thread-local storage
local = threading.local()

# Function to get and connect to relevant database connection for current thread
def get_db():
    if folderpath is None:
        print("folderpath value is empty. Skipping. Please connect to your Darnahi Account.")
        return None
    
    try:
        db_path = f"{folderpath}/summary/medical_records.db"
        conn = sqlite3.connect(db_path)
        return conn
    except sqlite3.Error as e:
        print(f"This is a demo version. Download to access all features: {e}")
        return None
        

def close_db():
    if hasattr(local, "db") and local.db is not None:
        local.db.close()
        local.db = None
        
# Initialize the database
def init_db(request: gr.Request):
    
    if folderpath is None:
        print("folderpath value is empty. Skipping. Please connect to your Darnahi Account.")
        return
        
    global get_basic
    get_basic(folderpath)
          
    db = get_db()
    if db is None:
        return
        
    try:
        with db:
            cursor = db.cursor()
            cursor.execute('''
                CREATE TABLE IF NOT EXISTS records (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    date TEXT,
                    age INTEGER,
                    sex TEXT,
                    symptom TEXT,
                    past_medical_history TEXT,
                    medications TEXT,
                    image BLOB,
                    comment TEXT
                )
            ''')
        print("Database initialized successfully.")
    except sqlite3.Error as e:
        print(f"This is a demo version. Download and run Darnahi: {e}")
    finally:
        if db:
            db.close()


def get_basic(folderpath):
    # This function gets chartit summary
    with open(f'{folderpath}/summary/chart.json', 'r') as file:
        json_data = json.load(file)
        
    extracted_info = extract_lforms_data(json.dumps(json_data))
    json_output = json.dumps(extracted_info, indent=4)
    write_text_to_pdf(folderpath, str(extracted_info))
    with open(f'{folderpath}/ocr_files/fhir_output.json', 'w', encoding='utf-8') as f:
        f.write(json_output)
    return extracted_info

#duplicate as AI module but seems to relevant to keep
def calculate_age(dob):
    if dob is not None:
        today = datetime.now()
        born = datetime.strptime(dob, "%Y-%m-%d")
    
        return today.year - born.year - ((today.month, today.day) < (born.month, born.day))
    return "Please update Chartit in you account"



#create PDF with container and margins
class PDF(FPDF):
    def header(self):
        self.set_font('Arial', 'B', 12)
        self.cell(0, 10, 'Medical Record', 0, 1, 'C')
        self.ln(10)

    def footer(self):
        self.set_y(-15)
        self.set_font('Arial', 'I', 8)
        self.cell(0, 10, f'Page {self.page_no()}/{{nb}}', 0, 0, 'C')

def create_pdf(record, image_data):
    pdf = PDF()
    pdf.alias_nb_pages()
    pdf.add_page()
    pdf.set_font("Arial", size=12)
    pdf.set_auto_page_break(auto=True, margin=15)
    
    # Set margin so that the comments dont go past margin
    pdf.set_left_margin(10)
    
    for key, value in record.items():
        if key != 'image' and key != 'comment':
            pdf.cell(0, 10, txt=f"{key}: {value}", ln=True)

    pdf.ln(10)
    pdf.set_font("Arial", 'B', size=12)
    pdf.cell(0, 10, txt="Comment:", ln=True)
    pdf.set_font("Arial", size=12)
    pdf.multi_cell(0, 10, txt=record['comment'])
    
    if image_data:
        try:
            image_bytes = base64.b64decode(image_data)

            with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
                temp_file.write(image_bytes)
                temp_file_path = temp_file.name

            pdf.add_page()
            pdf.image(temp_file_path, x=10, y=30, w=190)
            
            os.unlink(temp_file_path)
        except Exception as e:
            pdf.ln(10)
            pdf.cell(0, 10, txt=f"Error processing image: {e}", ln=True)
    
    summary_dir = os.path.join(folderpath, "summary")
    ocr_dir = os.path.join(folderpath, "ocr_files")
    
    
    filename = os.path.join(summary_dir, f"record_{record['date'].replace(':', '-')}.pdf")
    filename2 = os.path.join(ocr_dir, f"record_{record['date'].replace(':', '-')}.pdf")
    
    pdf.output(filename)
    pdf.output(filename2)
    return filename, filename2

def write_text_to_pdf(directory, text):
    pdf_buffer = BytesIO()
    c = canvas.Canvas(pdf_buffer, pagesize=letter)
    text_object = c.beginText(72, 750)  # Start 1 inch from top
    for line in text.split('\n'):
        text_object.textLine(line)
    c.drawText(text_object)
    c.save()
    
    # Save the PDF
    with open(f'{directory}/ocr_files/fhir_data.pdf', 'wb') as f:
        f.write(pdf_buffer.getvalue())

def submit_record(symptom, outputd, comment, file):
    basic_info = get_basic(folderpath)
    age = calculate_age(basic_info['date_of_birth'])
    final_comment = outputd if outputd is not None else (comment if comment is not None else "")
    
    record = {
        'date': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        'age': age,
        'sex': basic_info['sex'],
        'symptom': symptom,
        'past_medical_history': json.dumps(basic_info['past_medical_history']),
        'medications': json.dumps(basic_info['medications']),
        'comment': final_comment
    }
    
    image_data = None
    if file:
        try:
            # Read /encode file as base64
            with open(file.name, "rb") as image_file:
                image_data = base64.b64encode(image_file.read()).decode('utf-8')
        except Exception as e:
            return f"🔴 Error processing image: {e}"
    
    with get_db() as conn:
        cursor = conn.cursor()
        cursor.execute('''
            INSERT INTO records (date, age, sex, symptom, past_medical_history, medications, image, comment)
            VALUES (?, ?, ?, ?, ?, ?, ?, ?)
        ''', (record['date'], record['age'], record['sex'], record['symptom'], record['past_medical_history'], record['medications'], image_data, final_comment))
        conn.commit()
    
    pdf_filename = create_pdf(record, image_data)
    
    return f"🟢 Record submitted successfully. {pdf_filename}"

def fetch_records():
    with get_db() as conn:
        cursor = conn.cursor()
        cursor.execute("SELECT id, date, symptom FROM records ORDER BY date DESC")
        records = cursor.fetchall()
    if not records:
        return gr.Dropdown(choices=["No records available"], value="No records available")
    choices = [f"{r[0]} - {r[1]} - {r[2]}" for r in records]
    return gr.Dropdown(choices=choices, value=choices[0])

def display_record(selected_record):
    if not selected_record or selected_record == "No records available":
        return "Please select a record to display", None
    
    record_id = int(selected_record.split(' - ')[0])
    with get_db() as conn:
        cursor = conn.cursor()
        cursor.execute("SELECT * FROM records WHERE id = ?", (record_id,))
        record = cursor.fetchone()
    
    if not record:
        return "Record not found", None
    
    columns = ['id', 'date', 'age', 'sex', 'symptom', 'past_medical_history', 'medications', 'image', 'comment']
    record_dict = {columns[i]: record[i] for i in range(len(columns))}
    
    display_text = "\n".join([f"{k}: {v}" for k, v in record_dict.items() if k != 'image'])
    
    if record_dict['image']:
        try:
            image_data = base64.b64decode(record_dict['image'])
            img = Image.open(io.BytesIO(image_data))
            with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
                img.save(temp_file.name, 'PNG')
                temp_file_path = temp_file.name
            return display_text, temp_file_path
        except Exception as e:
            return f"{display_text}\n\nError displaying image: {e}", None
    else:
        return display_text, None

#toggle visibility and connect to relevant DB
def toggle_visibility(choice, request: gr.Request):
    set_user_health_files_directory(request)
    close_db()
    init_db(request)
    
    if choice == "new":
        return gr.Row.update(visible=True), gr.Row.update(visible=False)
    else:
        return gr.Row.update(visible=False), gr.Row.update(visible=True)

#Using ai to write a note
class HealthMotivator:
    async def get_motivation(self, symptom_info):
        messages = [
            {"role": "system", "content": "You are Darnabot, medical transcriber. Write a brief note with input and suggested first aid management only. Suggest doctor if complicated."},
            {"role": "user", "content": f"Generate a brief note input: {symptom_info} only. Do not make up information."},
        ]

        try:    
            OLLAMA_HOST = os.environ.get('OLLAMA_HOST', 'http://localhost:11434')
            async for part in await AsyncClient(host=OLLAMA_HOST).chat(model=f'{model}', messages=messages, stream=True):
                yield part['message']['content']
        except Exception as e:
            yield f"Remember to take care of your health. Please see links below! Also download {model} from ollama. (Error: {str(e)})"



motivator = HealthMotivator()

async def symptom_note(symptom, symptom_info):
    basic_info = get_basic(folderpath)
    age = calculate_age(basic_info['date_of_birth'])
    symptom_info = {
        'date': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        'age': age,
        'sex': basic_info['sex'],
        'symptom': symptom,
        'past_medical_history': json.dumps(basic_info['past_medical_history']),
        'medications': json.dumps(basic_info['medications']),
        'comment': symptom_info
    }
    
    motivation = "See a doctor for Advice. This is only information. "   
    async for chunk in motivator.get_motivation(symptom_info):
        motivation += chunk
        yield motivation
    
#######################GRADIO UI

with gr.Blocks(theme='Taithrah/Minimal', css= "footer{display:none !important}") as demo:
    with open('motivation.json', 'r') as file:
        proverbs = json.load(file)
    random_key = random.choice(list(proverbs.keys()))
    proverb = proverbs[random_key]
    gr.Markdown(f"""<div style='text-align: center; font-size: 1rem;'>
<i>{proverb}</i>
</div>
""")
    with gr.Tab("DARNABOT"):
        chatbot = gr.Chatbot(label="DARNAHI CONCIERGE 🛎️")
        msg = gr.Textbox(label="Ask DARNABOT:", placeholder="How can I help?")
        with gr.Row():
            btn1 = gr.Button("Ask")
            Clear = gr.ClearButton([msg, chatbot])


        btn1.click(my_function, inputs=[msg, chatbot], outputs=[chatbot])
        Clear.click(clear_conversation, outputs=[msg, chatbot])
    

    with gr.Tab("RUN AI"):
        
            gr.Markdown("## This section will run AI tools on your medical records and do the following\n 1. Calculate Age using Darnahi Chartit Data\n 2. Scan through your previously uploaded records once\n 3. Run Image recognition on it once\n 4. Generate Age and Sex based Recommendations using USPTF recommendations\n 5. Create summaries from your uploaded records that you can explore or download from file server tab\n 6. Create Wordclouds\n 7. Create structured and Unstructured RAG for Darnabot to use so as to tailor its answers using your uploaded chunked data. \n\n")
            with gr.Row():
                fetch_button = gr.Button("Fetch Age and Sex")
                with gr.Column(visible=False) as analysis_column:
                    deidentify_words = gr.Textbox(label="Enter information to deidentify", placeholder="names|email|address|phone")
                    analyze_button = gr.Button("Deidentify and Analyze")
    
            output1 = gr.Textbox(label="Age and Sex")
            output2 = gr.Textbox(label="Alert")
    
            fetch_button.click(
                fn=fetch_age_sex,
                inputs=[],
                outputs=[output1, output2, analysis_column, analyze_button]
            )
    
            analyze_button.click(
                fn=analyze,
                inputs=[deidentify_words],
                outputs=[output2]
         )

            with gr.Accordion(label="EXPLORE AI FILES)", open=False):

                with gr.Row():
                    with gr.Row():
                        file_list = gr.Dropdown(label="Select a file", choices=list_files(directory))
                        refresh_button = gr.Button("Refresh List")
                    status_text = gr.Textbox(label="Database Status", interactive=False)
    
                with gr.Row():
                    display_area = gr.Textbox(label="Explore Content", visible=True)
                    display_area2 = gr.Image(label="Image", visible=True)
    

                file_list.change(
                fn=update_display,
                inputs=[file_list],
                outputs=[display_area, display_area2]
                )
    
                refresh_button.click(
                fn=refresh_file_list,
                inputs=[],
                outputs=[file_list, status_text]
                )
            with gr.Accordion(label="OTHER INFORMATIONAL LINKS)", open=False):
            
                gr.HTML("""
            <iframe src="https://www.uspreventiveservicestaskforce.org/webview/#!/" width="100%" height="580px"></iframe>
            """)
            
                gr.Markdown("## Are you up to date on Immunizations?\n See Immunization suggestions:")
                gr.HTML("""
        <iframe src="https://www2a.cdc.gov/nip/adultimmsched/#print" 
        width="100%" height="500px"></iframe>
        """)

            

    
       
    with gr.Tab("⛨SYMPTOM LOGGER"): 
        with gr.Row():
            create_new = gr.Button("Create New")
            fetch_previous = gr.Button("Fetch Previous")
    
        with gr.Column(visible=False) as new_record_row:
            with gr.Row():
                symptom = gr.Dropdown(["pain", "rash", "diarrhea", "discharge", "wound", "other"], label="Symptom")
                comment = gr.Textbox(label="Details", placeholder="Rash since 2 days with discharge")
            with gr.Row():
                file = gr.File(label="Attach Image (optional)")
            result = gr.Textbox(label="Alert")
        
            outputd = gr.Markdown(label="Darnabot:")

                            
            with gr.Row():
                btnw = gr.Button("GENERATE")
                submit_btn = gr.Button("Save")
            btnw.click(symptom_note, inputs=(symptom, comment), outputs=[outputd])
        
        
        
    
        with gr.Column(visible=False) as explore_records_row:
            with gr.Row():
                records_dropdown = gr.Dropdown(label="Select Record", choices=["No records available"])
                with gr.Column():
                    fetch_btn = gr.Button("Refresh List")
                    display_btn = gr.Button("Display Selected Record")
            with gr.Row():
                record_display = gr.Textbox(label="Record Details")
                image_display = gr.Image(label="Attached Image")
    
        create_new.click(
        toggle_visibility, 
        inputs=gr.Text(value="new", visible=False), 
        outputs=[new_record_row, explore_records_row]
    )
    
        fetch_previous.click(
        toggle_visibility, 
        inputs=gr.Text(value="previous", visible=False), 
        outputs=[new_record_row, explore_records_row]
    )
    
        submit_btn.click(submit_record, inputs=[symptom, outputd, comment, file], outputs=result)
        fetch_btn.click(fetch_records, outputs=records_dropdown)
        display_btn.click(display_record, inputs=[records_dropdown], outputs=[record_display, image_display])     



if __name__ == "__main__":
    demo.launch()

    #demo.launch(server_name='0.0.0.0', server_port=3012, share=True)