Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,399 Bytes
d864d45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
import json
import os
import boto3
from dotenv import load_dotenv
# Import the main function from your CLI script
from cli_redact import main as cli_main
from tools.config import (
AWS_REGION,
DEFAULT_DUPLICATE_DETECTION_THRESHOLD,
DEFAULT_FUZZY_SPELLING_MISTAKES_NUM,
DEFAULT_MIN_CONSECUTIVE_PAGES,
DEFAULT_MIN_WORD_COUNT,
DEFAULT_PAGE_MAX,
DEFAULT_PAGE_MIN,
IMAGES_DPI,
LAMBDA_DEFAULT_USERNAME,
LAMBDA_EXTRACT_SIGNATURES,
LAMBDA_MAX_POLL_ATTEMPTS,
LAMBDA_POLL_INTERVAL,
LAMBDA_PREPARE_IMAGES,
)
def _get_env_list(env_var_name: str | list[str] | None) -> list[str]:
"""Parses a comma-separated environment variable into a list of strings."""
if isinstance(env_var_name, list):
return env_var_name
if env_var_name is None:
return []
# Handle string input
value = str(env_var_name).strip()
if not value or value == "[]":
return []
# Remove brackets if present (e.g., "[item1, item2]" -> "item1, item2")
if value.startswith("[") and value.endswith("]"):
value = value[1:-1]
# Remove quotes and split by comma
value = value.replace('"', "").replace("'", "")
if not value:
return []
# Split by comma and filter out any empty strings
return [s.strip() for s in value.split(",") if s.strip()]
def convert_string_to_boolean(value: str) -> bool:
"""Convert string to boolean, handling various formats."""
if isinstance(value, bool):
return value
elif value in ["True", "1", "true", "TRUE"]:
return True
elif value in ["False", "0", "false", "FALSE"]:
return False
else:
raise ValueError(f"Invalid boolean value: {value}")
print("Lambda entrypoint loading...")
# Initialize S3 client outside the handler for connection reuse
s3_client = boto3.client("s3", region_name=os.getenv("AWS_REGION", AWS_REGION))
print("S3 client initialised")
# Lambda's only writable directory is /tmp. Ensure that all temporary files are stored in this directory.
TMP_DIR = "/tmp"
INPUT_DIR = os.path.join(TMP_DIR, "input")
OUTPUT_DIR = os.path.join(TMP_DIR, "output")
os.environ["TESSERACT_DATA_FOLDER"] = os.path.join(TMP_DIR, "share/tessdata")
os.environ["TLDEXTRACT_CACHE"] = os.path.join(TMP_DIR, "tld")
os.environ["MPLCONFIGDIR"] = os.path.join(TMP_DIR, "matplotlib_cache")
os.environ["GRADIO_TEMP_DIR"] = os.path.join(TMP_DIR, "gradio_tmp")
os.environ["FEEDBACK_LOGS_FOLDER"] = os.path.join(TMP_DIR, "feedback")
os.environ["ACCESS_LOGS_FOLDER"] = os.path.join(TMP_DIR, "logs")
os.environ["USAGE_LOGS_FOLDER"] = os.path.join(TMP_DIR, "usage")
os.environ["PADDLE_MODEL_PATH"] = os.path.join(TMP_DIR, "paddle_models")
os.environ["SPACY_MODEL_PATH"] = os.path.join(TMP_DIR, "spacy_models")
# Define compatible file types for processing
COMPATIBLE_FILE_TYPES = {
".pdf",
".xlsx",
".xls",
".png",
".jpeg",
".csv",
".parquet",
".txt",
".jpg",
}
def download_file_from_s3(bucket_name, key, download_path):
"""Download a file from S3 to the local filesystem."""
try:
s3_client.download_file(bucket_name, key, download_path)
print(f"Successfully downloaded s3://{bucket_name}/{key} to {download_path}")
except Exception as e:
print(f"Error downloading from S3: {e}")
raise
def upload_directory_to_s3(local_directory, bucket_name, s3_prefix):
"""Upload all files from a local directory to an S3 prefix."""
for root, _, files in os.walk(local_directory):
for file_name in files:
local_file_path = os.path.join(root, file_name)
# Create a relative path to maintain directory structure if needed
relative_path = os.path.relpath(local_file_path, local_directory)
output_key = os.path.join(s3_prefix, relative_path)
try:
s3_client.upload_file(local_file_path, bucket_name, output_key)
print(
f"Successfully uploaded {local_file_path} to s3://{bucket_name}/{output_key}"
)
except Exception as e:
print(f"Error uploading to S3: {e}")
raise
def lambda_handler(event, context):
print(f"Received event: {json.dumps(event)}")
# 1. Setup temporary directories
os.makedirs(INPUT_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
# 2. Extract information from the event
# Assumes the event is triggered by S3 and may contain an 'arguments' payload
try:
record = event["Records"][0]
bucket_name = record["s3"]["bucket"]["name"]
input_key = record["s3"]["object"]["key"]
# The user metadata can be used to pass arguments
# This is more robust than embedding them in the main event body
try:
response = s3_client.head_object(Bucket=bucket_name, Key=input_key)
metadata = response.get("Metadata", dict())
print(f"S3 object metadata: {metadata}")
# Arguments can be passed as a JSON string in metadata
arguments_str = metadata.get("arguments", "{}")
print(f"Arguments string from metadata: '{arguments_str}'")
if arguments_str and arguments_str != "{}":
arguments = json.loads(arguments_str)
print(f"Successfully parsed arguments from metadata: {arguments}")
else:
arguments = dict()
print("No arguments found in metadata, using empty dictionary")
except Exception as e:
print(f"Warning: Could not parse metadata arguments: {e}")
print("Using empty arguments dictionary")
arguments = dict()
except (KeyError, IndexError) as e:
print(
f"Could not parse S3 event record: {e}. Checking for direct invocation payload."
)
# Fallback for direct invocation (e.g., from Step Functions or manual test)
bucket_name = event.get("bucket_name")
input_key = event.get("input_key")
arguments = event.get("arguments", dict())
if not all([bucket_name, input_key]):
raise ValueError(
"Missing 'bucket_name' or 'input_key' in direct invocation event."
)
# print(f"Processing s3://{bucket_name}/{input_key}")
# print(f"With arguments: {arguments}")
# print(f"Arguments type: {type(arguments)}")
# Log file type information
file_extension = os.path.splitext(input_key)[1].lower()
print(f"Detected file extension: '{file_extension}'")
# 3. Download the main input file
input_file_path = os.path.join(INPUT_DIR, os.path.basename(input_key))
download_file_from_s3(bucket_name, input_key, input_file_path)
# 3.1. Validate file type compatibility
is_env_file = input_key.lower().endswith(".env")
if not is_env_file and file_extension not in COMPATIBLE_FILE_TYPES:
error_message = f"File type '{file_extension}' is not supported for processing. Compatible file types are: {', '.join(sorted(COMPATIBLE_FILE_TYPES))}"
print(f"ERROR: {error_message}")
print(f"File was not processed due to unsupported file type: {file_extension}")
return {
"statusCode": 400,
"body": json.dumps(
{
"error": "Unsupported file type",
"message": error_message,
"supported_types": list(COMPATIBLE_FILE_TYPES),
"received_type": file_extension,
"file_processed": False,
}
),
}
print(f"File type '{file_extension}' is compatible for processing")
if is_env_file:
print("Processing .env file for configuration")
else:
print(f"Processing {file_extension} file for redaction/anonymization")
# 3.5. Check if the downloaded file is a .env file and handle accordingly
actual_input_file_path = input_file_path
if input_key.lower().endswith(".env"):
print("Detected .env file, loading environment variables...")
# Load environment variables from the .env file
print(f"Loading .env file from: {input_file_path}")
# Check if file exists and is readable
if os.path.exists(input_file_path):
print(".env file exists and is readable")
with open(input_file_path, "r") as f:
content = f.read()
print(f".env file content preview: {content[:200]}...")
else:
print(f"ERROR: .env file does not exist at {input_file_path}")
load_dotenv(input_file_path, override=True)
print("Environment variables loaded from .env file")
# Extract the actual input file path from environment variables
# Look for common environment variable names that might contain the input file path
env_input_file = os.getenv(
"INPUT_FILE"
) # This needs to be the full S3 path to the input file, e.g.INPUT_FILE=s3://my-processing-bucket/documents/sensitive-data.pdf
if env_input_file:
print(f"Found input file path in environment: {env_input_file}")
# If the path is an S3 path, download it
if env_input_file.startswith("s3://"):
# Parse S3 path: s3://bucket/key
s3_path_parts = env_input_file[5:].split("/", 1)
if len(s3_path_parts) == 2:
env_bucket = s3_path_parts[0]
env_key = s3_path_parts[1]
actual_input_file_path = os.path.join(
INPUT_DIR, os.path.basename(env_key)
)
print(
f"Downloading actual input file from s3://{env_bucket}/{env_key}"
)
download_file_from_s3(env_bucket, env_key, actual_input_file_path)
else:
print("Warning: Invalid S3 path format in environment variable")
actual_input_file_path = input_file_path
else:
# Assume it's a local path or relative path
actual_input_file_path = env_input_file
print(
f"Using input file path from environment: {actual_input_file_path}"
)
else:
print("Warning: No input file path found in environment variables")
print(
"Available environment variables:",
[
k
for k in os.environ.keys()
if k.startswith(("INPUT", "FILE", "DOCUMENT", "DIRECT"))
],
)
# Fall back to using the .env file itself (though this might not be what we want)
actual_input_file_path = input_file_path
else:
print("File is not a .env file, proceeding with normal processing")
# 4. Prepare arguments for the CLI function
# This dictionary should mirror the one in your app.py's "direct mode"
# If we loaded a .env file, use environment variables as defaults
cli_args = {
# Task Selection
"task": arguments.get("task", os.getenv("DIRECT_MODE_TASK", "redact")),
# General Arguments (apply to all file types)
"input_file": actual_input_file_path,
"output_dir": OUTPUT_DIR,
"input_dir": INPUT_DIR,
"language": arguments.get("language", os.getenv("DEFAULT_LANGUAGE", "en")),
"allow_list": arguments.get("allow_list", os.getenv("ALLOW_LIST_PATH", "")),
"pii_detector": arguments.get(
"pii_detector", os.getenv("LOCAL_PII_OPTION", "Local")
),
"username": arguments.get(
"username", os.getenv("DIRECT_MODE_DEFAULT_USER", LAMBDA_DEFAULT_USERNAME)
),
"save_to_user_folders": convert_string_to_boolean(
arguments.get(
"save_to_user_folders", os.getenv("SESSION_OUTPUT_FOLDER", "False")
)
),
"local_redact_entities": _get_env_list(
arguments.get(
"local_redact_entities", os.getenv("CHOSEN_REDACT_ENTITIES", list())
)
),
"aws_redact_entities": _get_env_list(
arguments.get(
"aws_redact_entities", os.getenv("CHOSEN_COMPREHEND_ENTITIES", list())
)
),
"aws_access_key": None, # Use IAM Role instead of keys
"aws_secret_key": None, # Use IAM Role instead of keys
"cost_code": arguments.get("cost_code", os.getenv("DEFAULT_COST_CODE", "")),
"aws_region": os.getenv("AWS_REGION", ""),
"s3_bucket": bucket_name,
"do_initial_clean": arguments.get(
"do_initial_clean",
convert_string_to_boolean(
os.getenv("DO_INITIAL_TABULAR_DATA_CLEAN", "False")
),
),
"save_logs_to_csv": convert_string_to_boolean(
arguments.get("save_logs_to_csv", os.getenv("SAVE_LOGS_TO_CSV", "True"))
),
"save_logs_to_dynamodb": arguments.get(
"save_logs_to_dynamodb",
convert_string_to_boolean(os.getenv("SAVE_LOGS_TO_DYNAMODB", "False")),
),
"display_file_names_in_logs": convert_string_to_boolean(
arguments.get(
"display_file_names_in_logs",
os.getenv("DISPLAY_FILE_NAMES_IN_LOGS", "True"),
)
),
"upload_logs_to_s3": convert_string_to_boolean(
arguments.get("upload_logs_to_s3", os.getenv("RUN_AWS_FUNCTIONS", "False"))
),
"s3_logs_prefix": arguments.get(
"s3_logs_prefix", os.getenv("S3_USAGE_LOGS_FOLDER", "")
),
"feedback_logs_folder": arguments.get(
"feedback_logs_folder",
os.getenv("FEEDBACK_LOGS_FOLDER", os.environ["FEEDBACK_LOGS_FOLDER"]),
),
"access_logs_folder": arguments.get(
"access_logs_folder",
os.getenv("ACCESS_LOGS_FOLDER", os.environ["ACCESS_LOGS_FOLDER"]),
),
"usage_logs_folder": arguments.get(
"usage_logs_folder",
os.getenv("USAGE_LOGS_FOLDER", os.environ["USAGE_LOGS_FOLDER"]),
),
"paddle_model_path": arguments.get(
"paddle_model_path",
os.getenv("PADDLE_MODEL_PATH", os.environ["PADDLE_MODEL_PATH"]),
),
"spacy_model_path": arguments.get(
"spacy_model_path",
os.getenv("SPACY_MODEL_PATH", os.environ["SPACY_MODEL_PATH"]),
),
# PDF/Image Redaction Arguments
"ocr_method": arguments.get("ocr_method", os.getenv("OCR_METHOD", "Local OCR")),
"page_min": int(
arguments.get("page_min", os.getenv("DEFAULT_PAGE_MIN", DEFAULT_PAGE_MIN))
),
"page_max": int(
arguments.get("page_max", os.getenv("DEFAULT_PAGE_MAX", DEFAULT_PAGE_MAX))
),
"images_dpi": float(
arguments.get("images_dpi", os.getenv("IMAGES_DPI", IMAGES_DPI))
),
"chosen_local_ocr_model": arguments.get(
"chosen_local_ocr_model", os.getenv("CHOSEN_LOCAL_OCR_MODEL", "tesseract")
),
"preprocess_local_ocr_images": convert_string_to_boolean(
arguments.get(
"preprocess_local_ocr_images",
os.getenv("PREPROCESS_LOCAL_OCR_IMAGES", "True"),
)
),
"compress_redacted_pdf": convert_string_to_boolean(
arguments.get(
"compress_redacted_pdf", os.getenv("COMPRESS_REDACTED_PDF", "True")
)
),
"return_pdf_end_of_redaction": convert_string_to_boolean(
arguments.get(
"return_pdf_end_of_redaction", os.getenv("RETURN_REDACTED_PDF", "True")
)
),
"deny_list_file": arguments.get(
"deny_list_file", os.getenv("DENY_LIST_PATH", "")
),
"allow_list_file": arguments.get(
"allow_list_file", os.getenv("ALLOW_LIST_PATH", "")
),
"redact_whole_page_file": arguments.get(
"redact_whole_page_file", os.getenv("WHOLE_PAGE_REDACTION_LIST_PATH", "")
),
"handwrite_signature_extraction": _get_env_list(
arguments.get(
"handwrite_signature_extraction",
os.getenv(
"DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX",
["Extract handwriting", "Extract signatures"],
),
)
),
"extract_forms": convert_string_to_boolean(
arguments.get(
"extract_forms",
os.getenv("INCLUDE_FORM_EXTRACTION_TEXTRACT_OPTION", "False"),
)
),
"extract_tables": convert_string_to_boolean(
arguments.get(
"extract_tables",
os.getenv("INCLUDE_TABLE_EXTRACTION_TEXTRACT_OPTION", "False"),
)
),
"extract_layout": convert_string_to_boolean(
arguments.get(
"extract_layout",
os.getenv("INCLUDE_LAYOUT_EXTRACTION_TEXTRACT_OPTION", "False"),
)
),
# Word/Tabular Anonymisation Arguments
"anon_strategy": arguments.get(
"anon_strategy",
os.getenv("DEFAULT_TABULAR_ANONYMISATION_STRATEGY", "redact completely"),
),
"text_columns": arguments.get(
"text_columns", _get_env_list(os.getenv("DEFAULT_TEXT_COLUMNS", list()))
),
"excel_sheets": arguments.get(
"excel_sheets", _get_env_list(os.getenv("DEFAULT_EXCEL_SHEETS", list()))
),
"fuzzy_mistakes": int(
arguments.get(
"fuzzy_mistakes",
os.getenv(
"DEFAULT_FUZZY_SPELLING_MISTAKES_NUM",
DEFAULT_FUZZY_SPELLING_MISTAKES_NUM,
),
)
),
"match_fuzzy_whole_phrase_bool": convert_string_to_boolean(
arguments.get(
"match_fuzzy_whole_phrase_bool",
os.getenv("MATCH_FUZZY_WHOLE_PHRASE_BOOL", "True"),
)
),
# Duplicate Detection Arguments
"duplicate_type": arguments.get(
"duplicate_type", os.getenv("DIRECT_MODE_DUPLICATE_TYPE", "pages")
),
"similarity_threshold": float(
arguments.get(
"similarity_threshold",
os.getenv(
"DEFAULT_DUPLICATE_DETECTION_THRESHOLD",
DEFAULT_DUPLICATE_DETECTION_THRESHOLD,
),
)
),
"min_word_count": int(
arguments.get(
"min_word_count",
os.getenv("DEFAULT_MIN_WORD_COUNT", DEFAULT_MIN_WORD_COUNT),
)
),
"min_consecutive_pages": int(
arguments.get(
"min_consecutive_pages",
os.getenv(
"DEFAULT_MIN_CONSECUTIVE_PAGES", DEFAULT_MIN_CONSECUTIVE_PAGES
),
)
),
"greedy_match": convert_string_to_boolean(
arguments.get(
"greedy_match", os.getenv("USE_GREEDY_DUPLICATE_DETECTION", "False")
)
),
"combine_pages": convert_string_to_boolean(
arguments.get("combine_pages", os.getenv("DEFAULT_COMBINE_PAGES", "True"))
),
"remove_duplicate_rows": convert_string_to_boolean(
arguments.get(
"remove_duplicate_rows", os.getenv("REMOVE_DUPLICATE_ROWS", "False")
)
),
# Textract Batch Operations Arguments
"textract_action": arguments.get("textract_action", ""),
"job_id": arguments.get("job_id", ""),
"extract_signatures": convert_string_to_boolean(
arguments.get("extract_signatures", str(LAMBDA_EXTRACT_SIGNATURES))
),
"textract_bucket": arguments.get(
"textract_bucket", os.getenv("TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_BUCKET", "")
),
"textract_input_prefix": arguments.get(
"textract_input_prefix",
os.getenv("TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER", ""),
),
"textract_output_prefix": arguments.get(
"textract_output_prefix",
os.getenv("TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER", ""),
),
"s3_textract_document_logs_subfolder": arguments.get(
"s3_textract_document_logs_subfolder", os.getenv("TEXTRACT_JOBS_S3_LOC", "")
),
"local_textract_document_logs_subfolder": arguments.get(
"local_textract_document_logs_subfolder",
os.getenv("TEXTRACT_JOBS_LOCAL_LOC", ""),
),
"poll_interval": int(arguments.get("poll_interval", LAMBDA_POLL_INTERVAL)),
"max_poll_attempts": int(
arguments.get("max_poll_attempts", LAMBDA_MAX_POLL_ATTEMPTS)
),
# Additional arguments that were missing
"search_query": arguments.get(
"search_query", os.getenv("DEFAULT_SEARCH_QUERY", "")
),
"prepare_images": convert_string_to_boolean(
arguments.get("prepare_images", str(LAMBDA_PREPARE_IMAGES))
),
}
# Combine extraction options
extraction_options = (
_get_env_list(cli_args["handwrite_signature_extraction"])
if cli_args["handwrite_signature_extraction"]
else list()
)
if cli_args["extract_forms"]:
extraction_options.append("Extract forms")
if cli_args["extract_tables"]:
extraction_options.append("Extract tables")
if cli_args["extract_layout"]:
extraction_options.append("Extract layout")
cli_args["handwrite_signature_extraction"] = extraction_options
# Download optional files if they are specified
allow_list_key = arguments.get("allow_list_file")
if allow_list_key:
allow_list_path = os.path.join(INPUT_DIR, "allow_list.csv")
download_file_from_s3(bucket_name, allow_list_key, allow_list_path)
cli_args["allow_list_file"] = allow_list_path
deny_list_key = arguments.get("deny_list_file")
if deny_list_key:
deny_list_path = os.path.join(INPUT_DIR, "deny_list.csv")
download_file_from_s3(bucket_name, deny_list_key, deny_list_path)
cli_args["deny_list_file"] = deny_list_path
# 5. Execute the main application logic
try:
print("--- Starting CLI Redact Main Function ---")
print(f"Arguments passed to cli_main: {cli_args}")
cli_main(direct_mode_args=cli_args)
print("--- CLI Redact Main Function Finished ---")
except Exception as e:
print(f"An error occurred during CLI execution: {e}")
# Optionally, re-raise the exception to make the Lambda fail
raise
# 6. Upload results back to S3
output_s3_prefix = f"output/{os.path.splitext(os.path.basename(input_key))[0]}"
print(
f"Uploading contents of {OUTPUT_DIR} to s3://{bucket_name}/{output_s3_prefix}/"
)
upload_directory_to_s3(OUTPUT_DIR, bucket_name, output_s3_prefix)
return {
"statusCode": 200,
"body": json.dumps(
f"Processing complete for {input_key}. Output saved to s3://{bucket_name}/{output_s3_prefix}/"
),
}
|