File size: 28,308 Bytes
ebf9010 a770956 ebf9010 6b28cfa a265560 ebf9010 6b28cfa bde6e5b ebf9010 a770956 ebf9010 0c2987b ebf9010 3518b67 ebf9010 eea5c07 ebf9010 eea5c07 ebf9010 eea5c07 ebf9010 eea5c07 ebf9010 eea5c07 ebf9010 face41c ec98119 c9e23cb ec98119 a9dcd2e ec98119 face41c ec98119 0c2987b bde6e5b 0c2987b a9dcd2e 3187788 a9dcd2e 3187788 a9dcd2e 3187788 a9dcd2e 3187788 a9dcd2e 3187788 a9dcd2e e8681e8 e2aae24 a9dcd2e 1d772de 143e2cc a9dcd2e 1d772de 3187788 a9dcd2e 3187788 1d772de ec98119 a9dcd2e ec98119 ebf9010 1d772de e2aae24 3cecbfa 1d772de a9dcd2e 1d772de e2aae24 1d772de ebf9010 5b4b5fb ebf9010 1d772de e2aae24 1d772de e2aae24 e5dfae7 5b4b5fb ebf9010 e2aae24 ebf9010 e2aae24 ebf9010 1d772de bde6e5b e2aae24 ebf9010 a9dcd2e 5b4b5fb ec98119 ebf9010 5b4b5fb ebf9010 eea5c07 ebf9010 1d772de ebf9010 a03496e ebf9010 e2aae24 5b4b5fb face41c e2aae24 a03496e ebf9010 e2aae24 ebf9010 a03496e ebf9010 a03496e c3a8cd7 ebf9010 a770956 ebf9010 4805b1c ebf9010 a770956 cb349ad ebf9010 1d772de ebf9010 a770956 eea5c07 a770956 c3a8cd7 bde6e5b cb349ad a770956 c3a8cd7 ebf9010 c3a8cd7 ebf9010 c3a8cd7 ebf9010 c3a8cd7 ebf9010 c3a8cd7 ebf9010 c3a8cd7 760ef5c cb349ad ebf9010 760ef5c c3a8cd7 ebf9010 c3a8cd7 ebf9010 c3a8cd7 cb349ad a770956 c3a8cd7 a770956 c3a8cd7 a770956 c3a8cd7 a770956 c3a8cd7 a770956 c3a8cd7 cb349ad c3a8cd7 a770956 c3a8cd7 a770956 c3a8cd7 cb349ad c3a8cd7 a770956 cb349ad 760ef5c cb349ad a770956 cb349ad a770956 cb349ad a770956 cb349ad a770956 c3a8cd7 a03496e a770956 a03496e cb349ad a770956 a03496e a770956 ebf9010 a770956 1d772de a770956 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 6b28cfa 20d940b 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 bde6e5b 6b28cfa a265560 6b28cfa bde6e5b 6b28cfa bde6e5b 6b28cfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
import gradio as gr
import pandas as pd
import numpy as np
from xml.etree.ElementTree import Element, SubElement, tostring, parse
from xml.dom import minidom
import uuid
from typing import List
from gradio_image_annotation import image_annotator
from gradio_image_annotation.image_annotator import AnnotatedImageData
from tools.file_conversion import is_pdf, convert_review_json_to_pandas_df, CUSTOM_BOX_COLOUR
from tools.helper_functions import get_file_name_without_type, output_folder, detect_file_type
from tools.file_redaction import redact_page_with_pymupdf
import json
import os
import pymupdf
from fitz import Document
from PIL import ImageDraw, Image
from collections import defaultdict
Image.MAX_IMAGE_PIXELS = None
def decrease_page(number:int):
'''
Decrease page number for review redactions page.
'''
#print("number:", str(number))
if number > 1:
return number - 1, number - 1
else:
return 1, 1
def increase_page(number:int, image_annotator_object:AnnotatedImageData):
'''
Increase page number for review redactions page.
'''
if not image_annotator_object:
return 1, 1
max_pages = len(image_annotator_object)
if number < max_pages:
return number + 1, number + 1
else:
return max_pages, max_pages
def update_zoom(current_zoom_level:int, annotate_current_page:int, decrease:bool=True):
if decrease == False:
if current_zoom_level >= 70:
current_zoom_level -= 10
else:
if current_zoom_level < 110:
current_zoom_level += 10
return current_zoom_level, annotate_current_page
def remove_duplicate_images_with_blank_boxes(data: List[dict]) -> List[dict]:
'''
Remove items from the annotator object where the same page exists twice.
'''
# Group items by 'image'
image_groups = defaultdict(list)
for item in data:
image_groups[item['image']].append(item)
# Process each group to prioritize items with non-empty boxes
result = []
for image, items in image_groups.items():
# Filter items with non-empty boxes
non_empty_boxes = [item for item in items if item.get('boxes')]
# Remove 'text' elements from boxes
for item in non_empty_boxes:
if 'boxes' in item:
item['boxes'] = [{k: v for k, v in box.items() if k != 'text'} for box in item['boxes']]
if non_empty_boxes:
# Keep the first entry with non-empty boxes
result.append(non_empty_boxes[0])
else:
# If all items have empty or missing boxes, keep the first item
result.append(items[0])
return result
def get_recogniser_dataframe_out(image_annotator_object, recogniser_dataframe_gr):
recogniser_entities_list = ["Redaction"]
recogniser_entities_drop = gr.Dropdown(value="", choices=[""], allow_custom_value=True, interactive=True)
recogniser_dataframe_out = recogniser_dataframe_gr
try:
review_dataframe = convert_review_json_to_pandas_df(image_annotator_object)[["page", "label"]]
recogniser_entities = review_dataframe["label"].unique().tolist()
recogniser_entities.append("ALL")
recogniser_entities_for_drop = sorted(recogniser_entities)
recogniser_dataframe_out = gr.Dataframe(review_dataframe)
recogniser_entities_drop = gr.Dropdown(value=recogniser_entities_for_drop[0], choices=recogniser_entities_for_drop, allow_custom_value=True, interactive=True)
recogniser_entities_list = [entity for entity in recogniser_entities_for_drop if entity != 'Redaction' and entity != 'ALL'] # Remove any existing 'Redaction'
recogniser_entities_list.insert(0, 'Redaction') # Add 'Redaction' to the start of the list
except Exception as e:
print("Could not extract recogniser information:", e)
recogniser_dataframe_out = recogniser_dataframe_gr
recogniser_entities_drop = gr.Dropdown(value="", choices=[""], allow_custom_value=True, interactive=True)
recogniser_entities_list = ["Redaction"]
return recogniser_dataframe_out, recogniser_dataframe_out, recogniser_entities_drop, recogniser_entities_list
def update_annotator(image_annotator_object:AnnotatedImageData, page_num:int, recogniser_entities_drop=gr.Dropdown(value="ALL", allow_custom_value=True), recogniser_dataframe_gr=gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]})), zoom:int=100):
'''
Update a gradio_image_annotation object with new annotation data
'''
recogniser_entities_list = ["Redaction"]
recogniser_dataframe_out = pd.DataFrame()
if recogniser_dataframe_gr.empty:
recogniser_dataframe_gr, recogniser_dataframe_out, recogniser_entities_drop, recogniser_entities_list = get_recogniser_dataframe_out(image_annotator_object, recogniser_dataframe_gr)
elif recogniser_dataframe_gr.iloc[0,0] == "":
recogniser_dataframe_gr, recogniser_dataframe_out, recogniser_entities_drop, recogniser_entities_list = get_recogniser_dataframe_out(image_annotator_object, recogniser_dataframe_gr)
else:
review_dataframe = update_entities_df(recogniser_entities_drop, recogniser_dataframe_gr)
recogniser_dataframe_out = gr.Dataframe(review_dataframe)
recogniser_entities_list = recogniser_dataframe_gr["label"].unique().tolist()
recogniser_entities_list = sorted(recogniser_entities_list)
recogniser_entities_list = [entity for entity in recogniser_entities_list if entity != 'Redaction'] # Remove any existing 'Redaction'
recogniser_entities_list.insert(0, 'Redaction') # Add 'Redaction' to the start of the list
zoom_str = str(zoom) + '%'
recogniser_colour_list = [(0, 0, 0) for _ in range(len(recogniser_entities_list))]
if not image_annotator_object:
page_num_reported = 1
out_image_annotator = image_annotator(
None,
boxes_alpha=0.1,
box_thickness=1,
label_list=recogniser_entities_list,
label_colors=recogniser_colour_list,
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=True
)
number_reported = gr.Number(label = "Page (press enter to change)", value=page_num_reported, precision=0)
return out_image_annotator, number_reported, number_reported, page_num_reported, recogniser_entities_drop, recogniser_dataframe_out, recogniser_dataframe_gr
#print("page_num at start of update_annotator function:", page_num)
if page_num is None:
page_num = 0
# Check bounding values for current page and page max
if page_num > 0:
page_num_reported = page_num
elif page_num == 0: page_num_reported = 1
else:
page_num = 0
page_num_reported = 1
page_max_reported = len(image_annotator_object)
if page_num_reported > page_max_reported:
page_num_reported = page_max_reported
image_annotator_object = remove_duplicate_images_with_blank_boxes(image_annotator_object)
out_image_annotator = image_annotator(
value = image_annotator_object[page_num_reported - 1],
boxes_alpha=0.1,
box_thickness=1,
label_list=recogniser_entities_list,
label_colors=recogniser_colour_list,
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=True
)
number_reported = gr.Number(label = "Page (press enter to change)", value=page_num_reported, precision=0)
return out_image_annotator, number_reported, number_reported, page_num_reported, recogniser_entities_drop, recogniser_dataframe_out, recogniser_dataframe_gr
def modify_existing_page_redactions(image_annotated:AnnotatedImageData, current_page:int, previous_page:int, all_image_annotations:List[AnnotatedImageData], recogniser_entities_drop=gr.Dropdown(value="ALL", allow_custom_value=True),recogniser_dataframe=gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]})), clear_all:bool=False):
'''
Overwrite current image annotations with modifications
'''
if not current_page:
current_page = 1
#If no previous page or is 0, i.e. first time run, then rewrite current page
#if not previous_page:
# previous_page = current_page
#print("image_annotated:", image_annotated)
image_annotated['image'] = all_image_annotations[previous_page - 1]["image"]
if clear_all == False:
all_image_annotations[previous_page - 1] = image_annotated
else:
all_image_annotations[previous_page - 1]["boxes"] = []
#print("all_image_annotations:", all_image_annotations)
# Rewrite all_image_annotations search dataframe with latest updates
try:
review_dataframe = convert_review_json_to_pandas_df(all_image_annotations)[["page", "label"]]
#print("review_dataframe['label']", review_dataframe["label"])
recogniser_entities = review_dataframe["label"].unique().tolist()
recogniser_entities.append("ALL")
recogniser_entities = sorted(recogniser_entities)
recogniser_dataframe_out = gr.Dataframe(review_dataframe)
#recogniser_dataframe_gr = gr.Dataframe(review_dataframe)
recogniser_entities_drop = gr.Dropdown(value=recogniser_entities_drop, choices=recogniser_entities, allow_custom_value=True, interactive=True)
except Exception as e:
print("Could not extract recogniser information:", e)
recogniser_dataframe_out = recogniser_dataframe
return all_image_annotations, current_page, current_page, recogniser_entities_drop, recogniser_dataframe_out
def apply_redactions(image_annotated:AnnotatedImageData, file_paths:List[str], doc:Document, all_image_annotations:List[AnnotatedImageData], current_page:int, review_file_state, save_pdf:bool=True, progress=gr.Progress(track_tqdm=True)):
'''
Apply modified redactions to a pymupdf and export review files
'''
#print("all_image_annotations:", all_image_annotations)
output_files = []
output_log_files = []
pdf_doc = []
#print("File paths in apply_redactions:", file_paths)
image_annotated['image'] = all_image_annotations[current_page - 1]["image"]
all_image_annotations[current_page - 1] = image_annotated
if not image_annotated:
print("No image annotations found")
return doc, all_image_annotations
if isinstance(file_paths, str):
file_paths = [file_paths]
for file_path in file_paths:
#print("file_path:", file_path)
file_name_without_ext = get_file_name_without_type(file_path)
file_name_with_ext = os.path.basename(file_path)
file_extension = os.path.splitext(file_path)[1].lower()
if save_pdf == True:
# If working with image docs
if (is_pdf(file_path) == False) & (file_extension not in '.csv'):
image = Image.open(file_paths[-1])
#image = pdf_doc
draw = ImageDraw.Draw(image)
for img_annotation_box in image_annotated['boxes']:
coords = [img_annotation_box["xmin"],
img_annotation_box["ymin"],
img_annotation_box["xmax"],
img_annotation_box["ymax"]]
fill = img_annotation_box["color"]
draw.rectangle(coords, fill=fill)
output_image_path = output_folder + file_name_without_ext + "_redacted.png"
image.save(output_folder + file_name_without_ext + "_redacted.png")
output_files.append(output_image_path)
print("Redactions saved to image file")
doc = [image]
elif file_extension in '.csv':
print("This is a csv")
pdf_doc = []
# If working with pdfs
elif is_pdf(file_path) == True:
pdf_doc = pymupdf.open(file_path)
orig_pdf_file_path = file_path
output_files.append(orig_pdf_file_path)
number_of_pages = pdf_doc.page_count
print("Saving pages to file.")
for i in progress.tqdm(range(0, number_of_pages), desc="Saving redactions to file", unit = "pages"):
#print("Saving page", str(i))
image_loc = all_image_annotations[i]['image']
#print("Image location:", image_loc)
# Load in image object
if isinstance(image_loc, np.ndarray):
image = Image.fromarray(image_loc.astype('uint8'))
#all_image_annotations[i]['image'] = image_loc.tolist()
elif isinstance(image_loc, Image.Image):
image = image_loc
#image_out_folder = output_folder + file_name_without_ext + "_page_" + str(i) + ".png"
#image_loc.save(image_out_folder)
#all_image_annotations[i]['image'] = image_out_folder
elif isinstance(image_loc, str):
image = Image.open(image_loc)
pymupdf_page = pdf_doc.load_page(i) #doc.load_page(current_page -1)
pymupdf_page = redact_page_with_pymupdf(pymupdf_page, all_image_annotations[i], image)
else:
print("File type not recognised.")
#try:
if pdf_doc:
out_pdf_file_path = output_folder + file_name_without_ext + "_redacted.pdf"
pdf_doc.save(out_pdf_file_path)
output_files.append(out_pdf_file_path)
else:
print("PDF input not found. Outputs not saved to PDF.")
# If save_pdf is not true, then add the original pdf to the output files
else:
if is_pdf(file_path) == True:
orig_pdf_file_path = file_path
output_files.append(orig_pdf_file_path)
try:
#print("Saving annotations to JSON")
out_annotation_file_path = output_folder + file_name_with_ext + '_review_file.json'
with open(out_annotation_file_path, 'w') as f:
json.dump(all_image_annotations, f)
output_log_files.append(out_annotation_file_path)
#print("Saving annotations to CSV review file")
#print("review_file_state:", review_file_state)
# Convert json to csv and also save this
review_df = convert_review_json_to_pandas_df(all_image_annotations, review_file_state)
out_review_file_file_path = output_folder + file_name_with_ext + '_review_file.csv'
review_df.to_csv(out_review_file_file_path, index=None)
output_files.append(out_review_file_file_path)
except Exception as e:
print("Could not save annotations to json or csv file:", e)
return doc, all_image_annotations, output_files, output_log_files
def get_boxes_json(annotations:AnnotatedImageData):
return annotations["boxes"]
def update_entities_df(choice:str, df:pd.DataFrame):
if choice=="ALL":
return df
else:
return df.loc[df["label"]==choice,:]
def df_select_callback(df: pd.DataFrame, evt: gr.SelectData):
row_value_page = evt.row_value[0] # This is the page number value
return row_value_page
def convert_image_coords_to_adobe(pdf_page_width, pdf_page_height, image_width, image_height, x1, y1, x2, y2):
'''
Converts coordinates from image space to Adobe PDF space.
Parameters:
- pdf_page_width: Width of the PDF page
- pdf_page_height: Height of the PDF page
- image_width: Width of the source image
- image_height: Height of the source image
- x1, y1, x2, y2: Coordinates in image space
Returns:
- Tuple of converted coordinates (x1, y1, x2, y2) in Adobe PDF space
'''
# Calculate scaling factors
scale_width = pdf_page_width / image_width
scale_height = pdf_page_height / image_height
# Convert coordinates
pdf_x1 = x1 * scale_width
pdf_x2 = x2 * scale_width
# Convert Y coordinates (flip vertical axis)
# Adobe coordinates start from bottom-left
pdf_y1 = pdf_page_height - (y1 * scale_height)
pdf_y2 = pdf_page_height - (y2 * scale_height)
# Make sure y1 is always less than y2 for Adobe's coordinate system
if pdf_y1 > pdf_y2:
pdf_y1, pdf_y2 = pdf_y2, pdf_y1
return pdf_x1, pdf_y1, pdf_x2, pdf_y2
def create_xfdf(df, pdf_path, pymupdf_doc, image_paths):
'''
Create an xfdf file from a review csv file and a pdf
'''
# Create root element
xfdf = Element('xfdf', xmlns="http://ns.adobe.com/xfdf/", xml_space="preserve")
# Add header
header = SubElement(xfdf, 'header')
header.set('pdf-filepath', pdf_path)
# Add annots
annots = SubElement(xfdf, 'annots')
for _, row in df.iterrows():
page_python_format = int(row["page"])-1
pymupdf_page = pymupdf_doc.load_page(page_python_format)
pdf_page_height = pymupdf_page.rect.height
pdf_page_width = pymupdf_page.rect.width
image = image_paths[page_python_format]
#print("image:", image)
if isinstance(image, str):
image = Image.open(image)
image_page_width, image_page_height = image.size
# Create redaction annotation
redact_annot = SubElement(annots, 'redact')
# Generate unique ID
annot_id = str(uuid.uuid4())
redact_annot.set('name', annot_id)
# Set page number (subtract 1 as PDF pages are 0-based)
redact_annot.set('page', str(int(row['page']) - 1))
# Convert coordinates
x1, y1, x2, y2 = convert_image_coords_to_adobe(
pdf_page_width,
pdf_page_height,
image_page_width,
image_page_height,
row['xmin'],
row['ymin'],
row['xmax'],
row['ymax']
)
if CUSTOM_BOX_COLOUR == "grey":
colour_str = "0.5,0.5,0.5"
else:
colour_str = row['color'].strip('()').replace(' ', '')
# Set coordinates
redact_annot.set('rect', f"{x1:.2f},{y1:.2f},{x2:.2f},{y2:.2f}")
# Set redaction properties
redact_annot.set('title', row['label']) # The type of redaction (e.g., "PERSON")
redact_annot.set('contents', row['text']) # The redacted text
redact_annot.set('subject', row['label']) # The redacted text
redact_annot.set('mimetype', "Form")
# Set appearance properties
redact_annot.set('border-color', colour_str) # Black border
redact_annot.set('repeat', 'false')
redact_annot.set('interior-color', colour_str)
#redact_annot.set('fill-color', colour_str)
#redact_annot.set('outline-color', colour_str)
#redact_annot.set('overlay-color', colour_str)
#redact_annot.set('overlay-text', row['label'])
redact_annot.set('opacity', "0.5")
# Add appearance dictionary
# appearanceDict = SubElement(redact_annot, 'appearancedict')
# # Normal appearance
# normal = SubElement(appearanceDict, 'normal')
# #normal.set('appearance', 'redact')
# # Color settings for the mark (before applying redaction)
# markAppearance = SubElement(redact_annot, 'markappearance')
# markAppearance.set('stroke-color', colour_str) # Red outline
# markAppearance.set('fill-color', colour_str) # Light red fill
# markAppearance.set('opacity', '0.5') # 50% opacity
# # Final redaction appearance (after applying)
# redactAppearance = SubElement(redact_annot, 'redactAppearance')
# redactAppearance.set('fillColor', colour_str) # Black fill
# redactAppearance.set('fontName', 'Helvetica')
# redactAppearance.set('fontSize', '12')
# redactAppearance.set('textAlignment', 'left')
# redactAppearance.set('textColor', colour_str) # White text
# Convert to pretty XML string
xml_str = minidom.parseString(tostring(xfdf)).toprettyxml(indent=" ")
return xml_str
def convert_df_to_xfdf(input_files:List[str], pdf_doc, image_paths):
'''
Load in files to convert a review file into an Adobe comment file format
'''
output_paths = []
pdf_name = ""
if isinstance(input_files, str):
file_paths_list = [input_files]
else:
file_paths_list = input_files
# Sort the file paths so that the pdfs come first
file_paths_list = sorted(file_paths_list, key=lambda x: (os.path.splitext(x)[1] != '.pdf', os.path.splitext(x)[1] != '.json'))
for file in file_paths_list:
if isinstance(file, str):
file_path = file
else:
file_path = file.name
file_path_name = get_file_name_without_type(file_path)
file_path_end = detect_file_type(file_path)
if file_path_end == "pdf":
pdf_name = os.path.basename(file_path)
if file_path_end == "csv":
# If no pdf name, just get the name of the file path
if not pdf_name:
pdf_name = file_path_name
# Read CSV file
df = pd.read_csv(file_path)
df.fillna('', inplace=True) # Replace NaN with an empty string
xfdf_content = create_xfdf(df, pdf_name, pdf_doc, image_paths)
output_path = output_folder + file_path_name + "_adobe.xfdf"
with open(output_path, 'w', encoding='utf-8') as f:
f.write(xfdf_content)
output_paths.append(output_path)
return output_paths
### Convert xfdf coordinates back to image for app
def convert_adobe_coords_to_image(pdf_page_width, pdf_page_height, image_width, image_height, x1, y1, x2, y2):
'''
Converts coordinates from Adobe PDF space to image space.
Parameters:
- pdf_page_width: Width of the PDF page
- pdf_page_height: Height of the PDF page
- image_width: Width of the source image
- image_height: Height of the source image
- x1, y1, x2, y2: Coordinates in Adobe PDF space
Returns:
- Tuple of converted coordinates (x1, y1, x2, y2) in image space
'''
# Calculate scaling factors
scale_width = image_width / pdf_page_width
scale_height = image_height / pdf_page_height
# Convert coordinates
image_x1 = x1 * scale_width
image_x2 = x2 * scale_width
# Convert Y coordinates (flip vertical axis)
# Adobe coordinates start from bottom-left
image_y1 = (pdf_page_height - y1) * scale_height
image_y2 = (pdf_page_height - y2) * scale_height
# Make sure y1 is always less than y2 for image's coordinate system
if image_y1 > image_y2:
image_y1, image_y2 = image_y2, image_y1
return image_x1, image_y1, image_x2, image_y2
def parse_xfdf(xfdf_path):
'''
Parse the XFDF file and extract redaction annotations.
Parameters:
- xfdf_path: Path to the XFDF file
Returns:
- List of dictionaries containing redaction information
'''
tree = parse(xfdf_path)
root = tree.getroot()
# Define the namespace
namespace = {'xfdf': 'http://ns.adobe.com/xfdf/'}
redactions = []
# Find all redact elements using the namespace
for redact in root.findall('.//xfdf:redact', namespaces=namespace):
#print("redact:", redact)
redaction_info = {
'image': '', # Image will be filled in later
'page': int(redact.get('page')) + 1, # Convert to 1-based index
'xmin': float(redact.get('rect').split(',')[0]),
'ymin': float(redact.get('rect').split(',')[1]),
'xmax': float(redact.get('rect').split(',')[2]),
'ymax': float(redact.get('rect').split(',')[3]),
'label': redact.get('title'),
'text': redact.get('contents'),
'color': redact.get('border-color', '(0, 0, 0)') # Default to black if not specified
}
redactions.append(redaction_info)
print("redactions:", redactions)
return redactions
def convert_xfdf_to_dataframe(file_paths_list, pymupdf_doc, image_paths):
'''
Convert redaction annotations from XFDF and associated images into a DataFrame.
Parameters:
- xfdf_path: Path to the XFDF file
- pdf_doc: PyMuPDF document object
- image_paths: List of PIL Image objects corresponding to PDF pages
Returns:
- DataFrame containing redaction information
'''
output_paths = []
xfdf_paths = []
df = pd.DataFrame()
#print("Image paths:", image_paths)
# Sort the file paths so that the pdfs come first
file_paths_list = sorted(file_paths_list, key=lambda x: (os.path.splitext(x)[1] != '.pdf', os.path.splitext(x)[1] != '.json'))
for file in file_paths_list:
if isinstance(file, str):
file_path = file
else:
file_path = file.name
file_path_name = get_file_name_without_type(file_path)
file_path_end = detect_file_type(file_path)
if file_path_end == "pdf":
pdf_name = os.path.basename(file_path)
#print("pymupdf_doc:", pymupdf_doc)
# Add pdf to outputs
output_paths.append(file_path)
if file_path_end == "xfdf":
if not pdf_name:
message = "Original PDF needed to convert from .xfdf format"
print(message)
raise ValueError(message)
xfdf_path = file
# if isinstance(xfdf_paths, str):
# xfdf_path = xfdf_paths.name
# else:
# xfdf_path = xfdf_paths[0].name
file_path_name = get_file_name_without_type(xfdf_path)
#print("file_path_name:", file_path_name)
# Parse the XFDF file
redactions = parse_xfdf(xfdf_path)
# Create a DataFrame from the redaction information
df = pd.DataFrame(redactions)
df.fillna('', inplace=True) # Replace NaN with an empty string
for _, row in df.iterrows():
page_python_format = int(row["page"])-1
pymupdf_page = pymupdf_doc.load_page(page_python_format)
pdf_page_height = pymupdf_page.rect.height
pdf_page_width = pymupdf_page.rect.width
image_path = image_paths[page_python_format]
#print("image_path:", image_path)
if isinstance(image_path, str):
image = Image.open(image_path)
image_page_width, image_page_height = image.size
# Convert to image coordinates
image_x1, image_y1, image_x2, image_y2 = convert_adobe_coords_to_image(pdf_page_width, pdf_page_height, image_page_width, image_page_height, row['xmin'], row['ymin'], row['xmax'], row['ymax'])
df.loc[_, ['xmin', 'ymin', 'xmax', 'ymax']] = [image_x1, image_y1, image_x2, image_y2]
# Optionally, you can add the image path or other relevant information
#print("Image path:", image_path)
df.loc[_, 'image'] = image_path
#print('row:', row)
out_file_path = output_folder + file_path_name + "_review_file.csv"
df.to_csv(out_file_path, index=None)
output_paths.append(out_file_path)
return output_paths |