File size: 59,183 Bytes
aa5c211 d60759d bafcf39 44d987c bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d aa5c211 d60759d aa5c211 d60759d aa5c211 bafcf39 aa5c211 d60759d aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 084af54 d60759d aa5c211 d60759d aa5c211 d60759d aa5c211 d60759d aa5c211 d60759d aa5c211 d60759d aa5c211 5b0fe2c d60759d aa5c211 d60759d 826ed50 d3e6a24 d60759d bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 44d987c bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 d60759d bafcf39 aa5c211 d60759d bafcf39 d60759d d3e6a24 bafcf39 d3e6a24 bafcf39 d3e6a24 bafcf39 d3e6a24 bafcf39 d3e6a24 bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 aa5c211 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d aa5c211 bafcf39 aa5c211 d60759d aa5c211 d60759d bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 b1f183d aa5c211 bafcf39 aa5c211 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 aa5c211 d60759d aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 d60759d aa5c211 d60759d bafcf39 aa5c211 d60759d bafcf39 d60759d bafcf39 d60759d aa5c211 d60759d aa5c211 d60759d aa5c211 bafcf39 aa5c211 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d aa5c211 d60759d aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 d60759d bafcf39 aa5c211 bafcf39 d60759d bafcf39 d60759d aa5c211 bafcf39 d60759d aa5c211 d60759d bafcf39 aa5c211 bafcf39 d60759d aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 aa5c211 d60759d bafcf39 d60759d bafcf39 d60759d aa5c211 d60759d bafcf39 aa5c211 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d d3e6a24 bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 d60759d bafcf39 aa5c211 d60759d aa5c211 bafcf39 aa5c211 bafcf39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 |
import argparse
import os
import time
import uuid
import pandas as pd
from tools.config import (
ALLOW_LIST_PATH,
AWS_ACCESS_KEY,
AWS_PII_OPTION,
AWS_REGION,
AWS_SECRET_KEY,
CHOSEN_COMPREHEND_ENTITIES,
CHOSEN_LOCAL_OCR_MODEL,
CHOSEN_REDACT_ENTITIES,
COMPRESS_REDACTED_PDF,
CUSTOM_ENTITIES,
DEFAULT_COMBINE_PAGES,
DEFAULT_COST_CODE,
DEFAULT_DUPLICATE_DETECTION_THRESHOLD,
DEFAULT_FUZZY_SPELLING_MISTAKES_NUM,
DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX,
DEFAULT_LANGUAGE,
DEFAULT_MIN_CONSECUTIVE_PAGES,
DEFAULT_MIN_WORD_COUNT,
DEFAULT_TABULAR_ANONYMISATION_STRATEGY,
DENY_LIST_PATH,
DIRECT_MODE_DEFAULT_USER,
DISPLAY_FILE_NAMES_IN_LOGS,
DO_INITIAL_TABULAR_DATA_CLEAN,
DOCUMENT_REDACTION_BUCKET,
FULL_COMPREHEND_ENTITY_LIST,
FULL_ENTITY_LIST,
IMAGES_DPI,
INPUT_FOLDER,
LOCAL_PII_OPTION,
OUTPUT_FOLDER,
PREPROCESS_LOCAL_OCR_IMAGES,
REMOVE_DUPLICATE_ROWS,
RETURN_REDACTED_PDF,
RUN_AWS_FUNCTIONS,
S3_USAGE_LOGS_FOLDER,
SAVE_LOGS_TO_CSV,
SAVE_LOGS_TO_DYNAMODB,
SESSION_OUTPUT_FOLDER,
TEXTRACT_JOBS_LOCAL_LOC,
TEXTRACT_JOBS_S3_LOC,
TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_BUCKET,
TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER,
TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER,
USE_GREEDY_DUPLICATE_DETECTION,
WHOLE_PAGE_REDACTION_LIST_PATH,
)
def _generate_session_hash() -> str:
"""Generate a unique session hash for logging purposes."""
return str(uuid.uuid4())[:8]
def get_username_and_folders(
username: str = "",
output_folder_textbox: str = OUTPUT_FOLDER,
input_folder_textbox: str = INPUT_FOLDER,
session_output_folder: str = SESSION_OUTPUT_FOLDER,
textract_document_upload_input_folder: str = TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER,
textract_document_upload_output_folder: str = TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER,
s3_textract_document_logs_subfolder: str = TEXTRACT_JOBS_S3_LOC,
local_textract_document_logs_subfolder: str = TEXTRACT_JOBS_LOCAL_LOC,
):
# Generate session hash for logging. Either from input user name or generated
if username:
out_session_hash = username
else:
out_session_hash = _generate_session_hash()
if session_output_folder == "True" or session_output_folder is True:
output_folder = output_folder_textbox + out_session_hash + "/"
input_folder = input_folder_textbox + out_session_hash + "/"
textract_document_upload_input_folder = (
textract_document_upload_input_folder + "/" + out_session_hash
)
textract_document_upload_output_folder = (
textract_document_upload_output_folder + "/" + out_session_hash
)
s3_textract_document_logs_subfolder = (
s3_textract_document_logs_subfolder + "/" + out_session_hash
)
local_textract_document_logs_subfolder = (
local_textract_document_logs_subfolder + "/" + out_session_hash + "/"
)
else:
output_folder = output_folder_textbox
input_folder = input_folder_textbox
if not os.path.exists(output_folder):
os.mkdir(output_folder)
if not os.path.exists(input_folder):
os.mkdir(input_folder)
return (
out_session_hash,
output_folder,
out_session_hash,
input_folder,
textract_document_upload_input_folder,
textract_document_upload_output_folder,
s3_textract_document_logs_subfolder,
local_textract_document_logs_subfolder,
)
def _get_env_list(env_var_name: str) -> list[str]:
"""Parses a comma-separated environment variable into a list of strings."""
value = env_var_name[1:-1].strip().replace('"', "").replace("'", "")
if not value:
return []
# Split by comma and filter out any empty strings that might result from extra commas
return [s.strip() for s in value.split(",") if s.strip()]
# Add custom spacy recognisers to the Comprehend list, so that local Spacy model can be used to pick up e.g. titles, streetnames, UK postcodes that are sometimes missed by comprehend
CHOSEN_COMPREHEND_ENTITIES.extend(CUSTOM_ENTITIES)
FULL_COMPREHEND_ENTITY_LIST.extend(CUSTOM_ENTITIES)
chosen_redact_entities = CHOSEN_REDACT_ENTITIES
full_entity_list = FULL_ENTITY_LIST
chosen_comprehend_entities = CHOSEN_COMPREHEND_ENTITIES
full_comprehend_entity_list = FULL_COMPREHEND_ENTITY_LIST
default_handwrite_signature_checkbox = DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX
# --- Main CLI Function ---
def main(direct_mode_args={}):
"""
A unified command-line interface to prepare, redact, and anonymise various document types.
Args:
direct_mode_args (dict, optional): Dictionary of arguments for direct mode execution.
If provided, uses these instead of parsing command line arguments.
"""
parser = argparse.ArgumentParser(
description="A versatile CLI for redacting PII from PDF/image files and anonymising Word/tabular data.",
formatter_class=argparse.RawTextHelpFormatter,
epilog="""
Examples:
To run these, you need to do the following:
- Open a terminal window
- CD to the app folder that contains this file (cli_redact.py)
- Load the virtual environment using either conda or venv depending on your setup
- Run one of the example commands below
- Look in the output/ folder to see output files:
# Redaction
## Redact a PDF with default settings (local OCR):
python cli_redact.py --input_file example_data/example_of_emails_sent_to_a_professor_before_applying.pdf
## Extract text from a PDF only (i.e. no redaction), using local OCR:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --redact_whole_page_file example_data/partnership_toolkit_redact_some_pages.csv --pii_detector None
## Extract text from a PDF only (i.e. no redaction), using local OCR, with a whole page redaction list:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --redact_whole_page_file example_data/partnership_toolkit_redact_some_pages.csv --pii_detector Local --local_redact_entities CUSTOM
## Redact a PDF with allow list (local OCR) and custom list of redaction entities:
python cli_redact.py --input_file example_data/graduate-job-example-cover-letter.pdf --allow_list_file example_data/test_allow_list_graduate.csv --local_redact_entities TITLES PERSON DATE_TIME
## Redact a PDF with limited pages and text extraction method (local text) with custom fuzzy matching:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --deny_list_file example_data/Partnership-Agreement-Toolkit_test_deny_list_para_single_spell.csv --local_redact_entities CUSTOM_FUZZY --page_min 1 --page_max 3 --ocr_method "Local text" --fuzzy_mistakes 3
## Redaction with custom deny list, allow list, and whole page redaction list:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --deny_list_file example_data/partnership_toolkit_redact_custom_deny_list.csv --redact_whole_page_file example_data/partnership_toolkit_redact_some_pages.csv --allow_list_file example_data/test_allow_list_partnership.csv
## Redact an image:
python cli_redact.py --input_file example_data/example_complaint_letter.jpg
## Anonymise csv file with specific columns:
python cli_redact.py --input_file example_data/combined_case_notes.csv --text_columns "Case Note" "Client" --anon_strategy replace_redacted
## Anonymise csv file with a different strategy (remove text completely):
python cli_redact.py --input_file example_data/combined_case_notes.csv --text_columns "Case Note" "Client" --anon_strategy redact
## Anonymise Excel file, remove text completely:
python cli_redact.py --input_file example_data/combined_case_notes.xlsx --text_columns "Case Note" "Client" --excel_sheets combined_case_notes --anon_strategy redact
## Anonymise a word document:
python cli_redact.py --input_file "example_data/Bold minimalist professional cover letter.docx" --anon_strategy replace_redacted
# Redaction with AWS services:
## Use Textract and Comprehend::
python cli_redact.py --input_file example_data/example_of_emails_sent_to_a_professor_before_applying.pdf --ocr_method "AWS Textract" --pii_detector "AWS Comprehend"
## Redact specific pages with AWS OCR and signature extraction:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --page_min 6 --page_max 7 --ocr_method "AWS Textract" --handwrite_signature_extraction "Extract handwriting" "Extract signatures"
## Redact with AWS OCR and additional layout extraction options:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --ocr_method "AWS Textract" --extract_layout
# Duplicate page detection
## Find duplicate pages in OCR files:
python cli_redact.py --task deduplicate --input_file example_data/example_outputs/doubled_output_joined.pdf_ocr_output.csv --duplicate_type pages --similarity_threshold 0.95
## Find duplicate in OCR files at the line level:
python cli_redact.py --task deduplicate --input_file example_data/example_outputs/doubled_output_joined.pdf_ocr_output.csv --duplicate_type pages --similarity_threshold 0.95 --combine_pages False --min_word_count 3
## Find duplicate rows in tabular data:
python cli_redact.py --task deduplicate --input_file example_data/Lambeth_2030-Our_Future_Our_Lambeth.pdf.csv --duplicate_type tabular --text_columns "text" --similarity_threshold 0.95
# AWS Textract whole document analysis
## Submit document to Textract for basic text analysis:
python cli_redact.py --task textract --textract_action submit --input_file example_data/example_of_emails_sent_to_a_professor_before_applying.pdf
## Submit document to Textract for analysis with signature extraction (Job ID will be printed to the console, you need this to retrieve the results):
python cli_redact.py --task textract --textract_action submit --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --extract_signatures
## Retrieve Textract results by job ID (returns a .json file output):
python cli_redact.py --task textract --textract_action retrieve --job_id 12345678-1234-1234-1234-123456789012
## List recent Textract jobs:
python cli_redact.py --task textract --textract_action list
""",
)
# --- Task Selection ---
task_group = parser.add_argument_group("Task Selection")
task_group.add_argument(
"--task",
choices=["redact", "deduplicate", "textract"],
default="redact",
help="Task to perform: redact (PII redaction/anonymisation), deduplicate (find duplicate content), or textract (AWS Textract batch operations).",
)
# --- General Arguments (apply to all file types) ---
general_group = parser.add_argument_group("General Options")
general_group.add_argument(
"--input_file",
nargs="+",
help="Path to the input file(s) to process. Separate multiple files with a space, and use quotes if there are spaces in the file name.",
)
general_group.add_argument(
"--output_dir", default=OUTPUT_FOLDER, help="Directory for all output files."
)
general_group.add_argument(
"--input_dir", default=INPUT_FOLDER, help="Directory for all input files."
)
general_group.add_argument(
"--language", default=DEFAULT_LANGUAGE, help="Language of the document content."
)
general_group.add_argument(
"--allow_list",
default=ALLOW_LIST_PATH,
help="Path to a CSV file with words to exclude from redaction.",
)
general_group.add_argument(
"--pii_detector",
choices=[LOCAL_PII_OPTION, AWS_PII_OPTION, "None"],
default=LOCAL_PII_OPTION,
help="Core PII detection method (Local or AWS Comprehend, or None).",
)
general_group.add_argument(
"--username", default=DIRECT_MODE_DEFAULT_USER, help="Username for the session."
)
general_group.add_argument(
"--save_to_user_folders",
default=SESSION_OUTPUT_FOLDER,
help="Whether to save to user folders or not.",
)
general_group.add_argument(
"--local_redact_entities",
nargs="+",
choices=full_entity_list,
default=chosen_redact_entities,
help=f"Local redaction entities to use. Default: {chosen_redact_entities}. Full list: {full_entity_list}.",
)
general_group.add_argument(
"--aws_redact_entities",
nargs="+",
choices=full_comprehend_entity_list,
default=chosen_comprehend_entities,
help=f"AWS redaction entities to use. Default: {chosen_comprehend_entities}. Full list: {full_comprehend_entity_list}.",
)
general_group.add_argument(
"--aws_access_key", default=AWS_ACCESS_KEY, help="Your AWS Access Key ID."
)
general_group.add_argument(
"--aws_secret_key", default=AWS_SECRET_KEY, help="Your AWS Secret Access Key."
)
general_group.add_argument(
"--cost_code", default=DEFAULT_COST_CODE, help="Cost code for tracking usage."
)
general_group.add_argument(
"--aws_region", default=AWS_REGION, help="AWS region for cloud services."
)
general_group.add_argument(
"--s3_bucket",
default=DOCUMENT_REDACTION_BUCKET,
help="S3 bucket name for cloud operations.",
)
general_group.add_argument(
"--do_initial_clean",
default=DO_INITIAL_TABULAR_DATA_CLEAN,
help="Perform initial text cleaning for tabular data.",
)
general_group.add_argument(
"--save_logs_to_csv",
default=SAVE_LOGS_TO_CSV,
help="Save processing logs to CSV files.",
)
general_group.add_argument(
"--save_logs_to_dynamodb",
default=SAVE_LOGS_TO_DYNAMODB,
help="Save processing logs to DynamoDB.",
)
general_group.add_argument(
"--display_file_names_in_logs",
default=DISPLAY_FILE_NAMES_IN_LOGS,
help="Include file names in log outputs.",
)
general_group.add_argument(
"--upload_logs_to_s3",
default=RUN_AWS_FUNCTIONS == "1",
help="Upload log files to S3 after processing.",
)
general_group.add_argument(
"--s3_logs_prefix",
default=S3_USAGE_LOGS_FOLDER,
help="S3 prefix for usage log files.",
)
# --- PDF/Image Redaction Arguments ---
pdf_group = parser.add_argument_group(
"PDF/Image Redaction Options (.pdf, .png, .jpg)"
)
pdf_group.add_argument(
"--ocr_method",
choices=["AWS Textract", "Local OCR", "Local text"],
default="Local OCR",
help="OCR method for text extraction from images.",
)
pdf_group.add_argument(
"--page_min", type=int, default=0, help="First page to redact."
)
pdf_group.add_argument(
"--page_max", type=int, default=0, help="Last page to redact."
)
pdf_group.add_argument(
"--images_dpi",
type=float,
default=float(IMAGES_DPI),
help="DPI for image processing.",
)
pdf_group.add_argument(
"--chosen_local_ocr_model",
choices=["tesseract", "hybrid", "paddle"],
default=CHOSEN_LOCAL_OCR_MODEL,
help="Local OCR model to use.",
)
pdf_group.add_argument(
"--preprocess_local_ocr_images",
default=PREPROCESS_LOCAL_OCR_IMAGES,
help="Preprocess images before OCR.",
)
pdf_group.add_argument(
"--compress_redacted_pdf",
default=COMPRESS_REDACTED_PDF,
help="Compress the final redacted PDF.",
)
pdf_group.add_argument(
"--return_pdf_end_of_redaction",
default=RETURN_REDACTED_PDF,
help="Return PDF at end of redaction process.",
)
pdf_group.add_argument(
"--deny_list_file",
default=DENY_LIST_PATH,
help="Custom words file to recognize for redaction.",
)
pdf_group.add_argument(
"--allow_list_file",
default=ALLOW_LIST_PATH,
help="Custom words file to recognize for redaction.",
)
pdf_group.add_argument(
"--redact_whole_page_file",
default=WHOLE_PAGE_REDACTION_LIST_PATH,
help="File for pages to redact completely.",
)
pdf_group.add_argument(
"--handwrite_signature_extraction",
nargs="+",
default=default_handwrite_signature_checkbox,
help='Handwriting and signature extraction options. Choose from "Extract handwriting", "Extract signatures".',
)
pdf_group.add_argument(
"--extract_forms",
action="store_true",
help="Extract forms during Textract analysis.",
)
pdf_group.add_argument(
"--extract_tables",
action="store_true",
help="Extract tables during Textract analysis.",
)
pdf_group.add_argument(
"--extract_layout",
action="store_true",
help="Extract layout during Textract analysis.",
)
# --- Word/Tabular Anonymisation Arguments ---
tabular_group = parser.add_argument_group(
"Word/Tabular Anonymisation Options (.docx, .csv, .xlsx)"
)
tabular_group.add_argument(
"--anon_strategy",
choices=[
"redact",
"redact completely",
"replace_redacted",
"entity_type",
"encrypt",
"hash",
"replace with 'REDACTED'",
"replace with <ENTITY_NAME>",
"mask",
"fake_first_name",
],
default=DEFAULT_TABULAR_ANONYMISATION_STRATEGY,
help="The anonymisation strategy to apply.",
)
tabular_group.add_argument(
"--text_columns",
nargs="+",
default=list(),
help="A list of column names to anonymise or deduplicate in tabular data.",
)
tabular_group.add_argument(
"--excel_sheets",
nargs="+",
default=list(),
help="Specific Excel sheet names to process.",
)
tabular_group.add_argument(
"--fuzzy_mistakes",
type=int,
default=DEFAULT_FUZZY_SPELLING_MISTAKES_NUM,
help="Number of allowed spelling mistakes for fuzzy matching.",
)
tabular_group.add_argument(
"--match_fuzzy_whole_phrase_bool",
default=True,
help="Match fuzzy whole phrase boolean.",
)
# --- Duplicate Detection Arguments ---
duplicate_group = parser.add_argument_group("Duplicate Detection Options")
duplicate_group.add_argument(
"--duplicate_type",
choices=["pages", "tabular"],
default="pages",
help="Type of duplicate detection: pages (for OCR files) or tabular (for CSV/Excel files).",
)
duplicate_group.add_argument(
"--similarity_threshold",
type=float,
default=DEFAULT_DUPLICATE_DETECTION_THRESHOLD,
help="Similarity threshold (0-1) to consider content as duplicates.",
)
duplicate_group.add_argument(
"--min_word_count",
type=int,
default=DEFAULT_MIN_WORD_COUNT,
help="Minimum word count for text to be considered in duplicate analysis.",
)
duplicate_group.add_argument(
"--min_consecutive_pages",
type=int,
default=DEFAULT_MIN_CONSECUTIVE_PAGES,
help="Minimum number of consecutive pages to consider as a match.",
)
duplicate_group.add_argument(
"--greedy_match",
default=USE_GREEDY_DUPLICATE_DETECTION,
help="Use greedy matching strategy for consecutive pages.",
)
duplicate_group.add_argument(
"--combine_pages",
default=DEFAULT_COMBINE_PAGES,
help="Combine text from the same page number within a file. Alternative will enable line-level duplicate detection.",
)
duplicate_group.add_argument(
"--remove_duplicate_rows",
default=REMOVE_DUPLICATE_ROWS,
help="Remove duplicate rows from the output.",
)
# --- Textract Batch Operations Arguments ---
textract_group = parser.add_argument_group("Textract Batch Operations Options")
textract_group.add_argument(
"--textract_action",
choices=["submit", "retrieve", "list"],
help="Textract action to perform: submit (submit document for analysis), retrieve (get results by job ID), or list (show recent jobs).",
)
textract_group.add_argument("--job_id", help="Textract job ID for retrieve action.")
textract_group.add_argument(
"--extract_signatures",
action="store_true",
help="Extract signatures during Textract analysis (for submit action).",
)
textract_group.add_argument(
"--textract_bucket",
default=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_BUCKET,
help="S3 bucket name for Textract operations (overrides default).",
)
textract_group.add_argument(
"--textract_input_prefix",
default=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER,
help="S3 prefix for input files in Textract operations.",
)
textract_group.add_argument(
"--textract_output_prefix",
default=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER,
help="S3 prefix for output files in Textract operations.",
)
textract_group.add_argument(
"--s3_textract_document_logs_subfolder",
default=TEXTRACT_JOBS_S3_LOC,
help="S3 prefix for logs in Textract operations.",
)
textract_group.add_argument(
"--local_textract_document_logs_subfolder",
default=TEXTRACT_JOBS_LOCAL_LOC,
help="Local prefix for logs in Textract operations.",
)
textract_group.add_argument(
"--poll_interval",
type=int,
default=30,
help="Polling interval in seconds for Textract job status.",
)
textract_group.add_argument(
"--max_poll_attempts",
type=int,
default=120,
help="Maximum number of polling attempts for Textract job completion.",
)
# Parse arguments - either from command line or direct mode
if direct_mode_args:
# Use direct mode arguments
args = argparse.Namespace(**direct_mode_args)
else:
# Parse command line arguments
args = parser.parse_args()
# --- Initial Setup ---
# Convert string boolean variables to boolean
if args.preprocess_local_ocr_images == "True":
args.preprocess_local_ocr_images = True
else:
args.preprocess_local_ocr_images = False
if args.greedy_match == "True":
args.greedy_match = True
else:
args.greedy_match = False
if args.combine_pages == "True":
args.combine_pages = True
else:
args.combine_pages = False
if args.remove_duplicate_rows == "True":
args.remove_duplicate_rows = True
else:
args.remove_duplicate_rows = False
if args.return_pdf_end_of_redaction == "True":
args.return_pdf_end_of_redaction = True
else:
args.return_pdf_end_of_redaction = False
if args.compress_redacted_pdf == "True":
args.compress_redacted_pdf = True
else:
args.compress_redacted_pdf = False
if args.do_initial_clean == "True":
args.do_initial_clean = True
else:
args.do_initial_clean = False
if args.save_logs_to_csv == "True":
args.save_logs_to_csv = True
else:
args.save_logs_to_csv = False
if args.save_logs_to_dynamodb == "True":
args.save_logs_to_dynamodb = True
else:
args.save_logs_to_dynamodb = False
if args.display_file_names_in_logs == "True":
args.display_file_names_in_logs = True
else:
args.display_file_names_in_logs = False
if args.match_fuzzy_whole_phrase_bool == "True":
args.match_fuzzy_whole_phrase_bool = True
else:
args.match_fuzzy_whole_phrase_bool = False
if args.save_to_user_folders == "True":
args.save_to_user_folders = True
else:
args.save_to_user_folders = False
# Combine extraction options
extraction_options = (
list(args.handwrite_signature_extraction)
if args.handwrite_signature_extraction
else []
)
if args.extract_forms:
extraction_options.append("Extract forms")
if args.extract_tables:
extraction_options.append("Extract tables")
if args.extract_layout:
extraction_options.append("Extract layout")
args.handwrite_signature_extraction = extraction_options
if args.task in ["redact", "deduplicate"]:
if args.input_file:
if isinstance(args.input_file, str):
args.input_file = [args.input_file]
_, file_extension = os.path.splitext(args.input_file[0])
file_extension = file_extension.lower()
else:
raise ValueError("Error: --input_file is required for 'redact' task.")
# Initialise usage logger if logging is enabled
usage_logger = None
if args.save_logs_to_csv or args.save_logs_to_dynamodb:
from tools.cli_usage_logger import create_cli_usage_logger
try:
usage_logger = create_cli_usage_logger()
except Exception as e:
print(f"Warning: Could not initialise usage logger: {e}")
# Get username and folders
(
session_hash,
args.output_dir,
_,
args.input_dir,
args.textract_input_prefix,
args.textract_output_prefix,
args.s3_textract_document_logs_subfolder,
args.local_textract_document_logs_subfolder,
) = get_username_and_folders(
username=args.username,
output_folder_textbox=args.output_dir,
input_folder_textbox=args.input_dir,
session_output_folder=args.save_to_user_folders,
textract_document_upload_input_folder=args.textract_input_prefix,
textract_document_upload_output_folder=args.textract_output_prefix,
s3_textract_document_logs_subfolder=args.s3_textract_document_logs_subfolder,
local_textract_document_logs_subfolder=args.local_textract_document_logs_subfolder,
)
print(
f"Conducting analyses with user {args.username}. Outputs will be saved to {args.output_dir}."
)
# --- Route to the Correct Workflow Based on Task and File Type ---
# Validate input_file requirement for tasks that need it
if args.task in ["redact", "deduplicate"] and not args.input_file:
print(f"Error: --input_file is required for '{args.task}' task.")
return
if args.ocr_method in ["Local OCR", "AWS Textract"]:
args.prepare_images = True
else:
args.prepare_images = False
from tools.cli_usage_logger import create_cli_usage_logger, log_redaction_usage
# Task 1: Redaction/Anonymisation
if args.task == "redact":
# Workflow 1: PDF/Image Redaction
if file_extension in [".pdf", ".png", ".jpg", ".jpeg"]:
print("--- Detected PDF/Image file. Starting Redaction Workflow... ---")
start_time = time.time()
try:
from tools.file_conversion import prepare_image_or_pdf
from tools.file_redaction import choose_and_run_redactor
# Step 1: Prepare the document
print("\nStep 1: Preparing document...")
(
prep_summary,
prepared_pdf_paths,
image_file_paths,
_,
_,
pdf_doc,
image_annotations,
_,
original_cropboxes,
page_sizes,
_,
_,
_,
_,
_,
) = prepare_image_or_pdf(
file_paths=args.input_file,
text_extract_method=args.ocr_method,
all_line_level_ocr_results_df=pd.DataFrame(),
all_page_line_level_ocr_results_with_words_df=pd.DataFrame(),
first_loop_state=True,
prepare_for_review=False,
output_folder=args.output_dir,
input_folder=args.input_dir,
prepare_images=args.prepare_images,
)
print(f"Preparation complete. {prep_summary}")
# Step 2: Redact the prepared document
print("\nStep 2: Running redaction...")
(
output_summary,
output_files,
_,
_,
log_files,
_,
_,
_,
_,
_,
_,
_,
_,
_,
comprehend_query_number,
_,
_,
_,
_,
_,
_,
page_sizes,
_,
_,
_,
total_textract_query_number,
_,
_,
_,
_,
_,
_,
_,
) = choose_and_run_redactor(
file_paths=args.input_file,
prepared_pdf_file_paths=prepared_pdf_paths,
pdf_image_file_paths=image_file_paths,
chosen_redact_entities=args.local_redact_entities,
chosen_redact_comprehend_entities=args.aws_redact_entities,
text_extraction_method=args.ocr_method,
in_allow_list=args.allow_list_file,
in_deny_list=args.deny_list_file,
redact_whole_page_list=args.redact_whole_page_file,
first_loop_state=True,
page_min=args.page_min,
page_max=args.page_max,
handwrite_signature_checkbox=args.handwrite_signature_extraction,
max_fuzzy_spelling_mistakes_num=args.fuzzy_mistakes,
match_fuzzy_whole_phrase_bool=args.match_fuzzy_whole_phrase_bool,
pymupdf_doc=pdf_doc,
annotations_all_pages=image_annotations,
page_sizes=page_sizes,
document_cropboxes=original_cropboxes,
pii_identification_method=args.pii_detector,
aws_access_key_textbox=args.aws_access_key,
aws_secret_key_textbox=args.aws_secret_key,
language=args.language,
output_folder=args.output_dir,
input_folder=args.input_dir,
)
# Calculate processing time
end_time = time.time()
processing_time = end_time - start_time
# Log usage data if logger is available
if usage_logger:
try:
# Extract file name for logging
print("Saving logs to CSV")
doc_file_name = (
os.path.basename(args.input_file[0])
if args.display_file_names_in_logs
else "document"
)
data_file_name = "" # Not applicable for PDF/image redaction
# Determine if this was a Textract API call
is_textract_call = args.ocr_method == "AWS Textract"
# Count pages (approximate from page_sizes if available)
total_pages = len(page_sizes) if page_sizes else 1
# Count API calls (approximate - would need to be tracked in the redaction function)
textract_queries = (
int(total_textract_query_number) if is_textract_call else 0
)
comprehend_queries = (
int(comprehend_query_number)
if args.pii_detector == "AWS Comprehend"
else 0
)
# Format handwriting/signature options
handwriting_signature = (
", ".join(args.handwrite_signature_extraction)
if args.handwrite_signature_extraction
else ""
)
log_redaction_usage(
logger=usage_logger,
session_hash=session_hash,
doc_file_name=doc_file_name,
data_file_name=data_file_name,
time_taken=processing_time,
total_pages=total_pages,
textract_queries=textract_queries,
pii_method=args.pii_detector,
comprehend_queries=comprehend_queries,
cost_code=args.cost_code,
handwriting_signature=handwriting_signature,
text_extraction_method=args.ocr_method,
is_textract_call=is_textract_call,
task=args.task,
save_to_dynamodb=args.save_logs_to_dynamodb,
save_to_s3=args.upload_logs_to_s3,
s3_bucket=args.s3_bucket,
s3_key_prefix=args.s3_logs_prefix,
)
except Exception as e:
print(f"Warning: Could not log usage data: {e}")
print("\n--- Redaction Process Complete ---")
print(f"Summary: {output_summary}")
print(f"Processing time: {processing_time:.2f} seconds")
print(f"\nOutput files saved to: {args.output_dir}")
print("Generated Files:", sorted(output_files))
if log_files:
print("Log Files:", sorted(log_files))
except Exception as e:
print(
f"\nAn error occurred during the PDF/Image redaction workflow: {e}"
)
# Workflow 2: Word/Tabular Data Anonymisation
elif file_extension in [".docx", ".xlsx", ".xls", ".csv", ".parquet"]:
print(
"--- Detected Word/Tabular file. Starting Anonymisation Workflow... ---"
)
start_time = time.time()
try:
from tools.data_anonymise import anonymise_files_with_open_text
# Run the anonymisation function directly
(
output_summary,
output_files,
_,
_,
log_files,
_,
processing_time,
comprehend_query_number,
) = anonymise_files_with_open_text(
file_paths=args.input_file,
in_text="", # Not used for file-based operations
anon_strategy=args.anon_strategy,
chosen_cols=args.text_columns,
chosen_redact_entities=args.local_redact_entities,
in_allow_list=args.allow_list_file,
in_excel_sheets=args.excel_sheets,
first_loop_state=True,
output_folder=args.output_dir,
in_deny_list=args.deny_list_file,
max_fuzzy_spelling_mistakes_num=args.fuzzy_mistakes,
pii_identification_method=args.pii_detector,
chosen_redact_comprehend_entities=args.aws_redact_entities,
aws_access_key_textbox=args.aws_access_key,
aws_secret_key_textbox=args.aws_secret_key,
language=args.language,
do_initial_clean=args.do_initial_clean,
)
# Calculate processing time
end_time = time.time()
processing_time = end_time - start_time
# Log usage data if logger is available
if usage_logger:
try:
print("Saving logs to CSV")
# Extract file name for logging
doc_file_name = "" # Not applicable for tabular data
data_file_name = (
os.path.basename(args.input_file[0])
if args.display_file_names_in_logs
else "data_file"
)
# Determine if this was a Textract API call (not applicable for tabular)
is_textract_call = False
# Count pages (not applicable for tabular data)
total_pages = 0
# Count API calls (approximate - would need to be tracked in the anonymisation function)
textract_queries = 0 # Not applicable for tabular data
comprehend_queries = (
comprehend_query_number
if args.pii_detector == "AWS Comprehend"
else 0
)
# Format handwriting/signature options (not applicable for tabular)
handwriting_signature = ""
log_redaction_usage(
logger=usage_logger,
session_hash=session_hash,
doc_file_name=doc_file_name,
data_file_name=data_file_name,
time_taken=processing_time,
total_pages=total_pages,
textract_queries=textract_queries,
pii_method=args.pii_detector,
comprehend_queries=comprehend_queries,
cost_code=args.cost_code,
handwriting_signature=handwriting_signature,
text_extraction_method="tabular", # Indicate this is tabular processing
is_textract_call=is_textract_call,
task=args.task,
save_to_dynamodb=args.save_logs_to_dynamodb,
save_to_s3=args.upload_logs_to_s3,
s3_bucket=args.s3_bucket,
s3_key_prefix=args.s3_logs_prefix,
)
except Exception as e:
print(f"Warning: Could not log usage data: {e}")
print("\n--- Anonymisation Process Complete ---")
print(f"Summary: {output_summary}")
print(f"Processing time: {processing_time:.2f} seconds")
print(f"\nOutput files saved to: {args.output_dir}")
print("Generated Files:", sorted(output_files))
if log_files:
print("Log Files:", sorted(log_files))
except Exception as e:
print(
f"\nAn error occurred during the Word/Tabular anonymisation workflow: {e}"
)
else:
print(f"Error: Unsupported file type '{file_extension}' for redaction.")
print("Supported types for redaction: .pdf, .png, .jpg, .jpeg")
print(
"Supported types for anonymisation: .docx, .xlsx, .xls, .csv, .parquet"
)
# Task 2: Duplicate Detection
elif args.task == "deduplicate":
print("--- Starting Duplicate Detection Workflow... ---")
try:
from tools.find_duplicate_pages import run_duplicate_analysis
if args.duplicate_type == "pages":
# Page duplicate detection
if file_extension == ".csv":
print(
"--- Detected OCR CSV file. Starting Page Duplicate Detection... ---"
)
start_time = time.time()
if args.combine_pages is True:
print("Combining pages...")
else:
print("Using line-level duplicate detection...")
# Load the CSV file as a list for the duplicate analysis function
(
results_df,
output_paths,
full_data_by_file,
processing_time,
task_textbox,
) = run_duplicate_analysis(
files=args.input_file,
threshold=args.similarity_threshold,
min_words=args.min_word_count,
min_consecutive=args.min_consecutive_pages,
greedy_match=args.greedy_match,
combine_pages=args.combine_pages,
output_folder=args.output_dir,
)
end_time = time.time()
processing_time = end_time - start_time
print("\n--- Page Duplicate Detection Complete ---")
print(f"Found {len(results_df)} duplicate matches")
print(f"\nOutput files saved to: {args.output_dir}")
if output_paths:
print("Generated Files:", sorted(output_paths))
else:
print(
"Error: Page duplicate detection requires CSV files with OCR data."
)
print("Please provide a CSV file containing OCR output data.")
# Log usage data if logger is available
if usage_logger:
try:
# Extract file name for logging
print("Saving logs to CSV")
doc_file_name = (
os.path.basename(args.input_file[0])
if args.display_file_names_in_logs
else "document"
)
data_file_name = (
"" # Not applicable for PDF/image redaction
)
# Determine if this was a Textract API call
is_textract_call = False
# Count pages (approximate from page_sizes if available)
total_pages = len(page_sizes) if page_sizes else 1
# Count API calls (approximate - would need to be tracked in the redaction function)
textract_queries = 0
comprehend_queries = 0
# Format handwriting/signature options
handwriting_signature = ""
log_redaction_usage(
logger=usage_logger,
session_hash=session_hash,
doc_file_name=doc_file_name,
data_file_name=data_file_name,
time_taken=processing_time,
total_pages=total_pages,
textract_queries=textract_queries,
pii_method=args.pii_detector,
comprehend_queries=comprehend_queries,
cost_code=args.cost_code,
handwriting_signature=handwriting_signature,
text_extraction_method=args.ocr_method,
is_textract_call=is_textract_call,
task=args.task,
save_to_dynamodb=args.save_logs_to_dynamodb,
save_to_s3=args.upload_logs_to_s3,
s3_bucket=args.s3_bucket,
s3_key_prefix=args.s3_logs_prefix,
)
except Exception as e:
print(f"Warning: Could not log usage data: {e}")
elif args.duplicate_type == "tabular":
# Tabular duplicate detection
from tools.find_duplicate_tabular import run_tabular_duplicate_detection
if file_extension in [".csv", ".xlsx", ".xls", ".parquet"]:
print(
"--- Detected tabular file. Starting Tabular Duplicate Detection... ---"
)
start_time = time.time()
(
results_df,
output_paths,
full_data_by_file,
processing_time,
task_textbox,
) = run_tabular_duplicate_detection(
files=args.input_file,
threshold=args.similarity_threshold,
min_words=args.min_word_count,
text_columns=args.text_columns,
output_folder=args.output_dir,
do_initial_clean_dup=args.do_initial_clean,
in_excel_tabular_sheets=args.excel_sheets,
remove_duplicate_rows=args.remove_duplicate_rows,
)
end_time = time.time()
processing_time = end_time - start_time
# Log usage data if logger is available
if usage_logger:
try:
# Extract file name for logging
print("Saving logs to CSV")
doc_file_name = ""
data_file_name = (
os.path.basename(args.input_file[0])
if args.display_file_names_in_logs
else "data_file"
)
# Determine if this was a Textract API call
is_textract_call = False
# Count pages (approximate from page_sizes if available)
total_pages = len(page_sizes) if page_sizes else 1
# Count API calls (approximate - would need to be tracked in the redaction function)
textract_queries = 0
comprehend_queries = 0
# Format handwriting/signature options
handwriting_signature = ""
log_redaction_usage(
logger=usage_logger,
session_hash=session_hash,
doc_file_name=doc_file_name,
data_file_name=data_file_name,
time_taken=processing_time,
total_pages=total_pages,
textract_queries=textract_queries,
pii_method=args.pii_detector,
comprehend_queries=comprehend_queries,
cost_code=args.cost_code,
handwriting_signature=handwriting_signature,
text_extraction_method=args.ocr_method,
is_textract_call=is_textract_call,
task=args.task,
save_to_dynamodb=args.save_logs_to_dynamodb,
save_to_s3=args.upload_logs_to_s3,
s3_bucket=args.s3_bucket,
s3_key_prefix=args.s3_logs_prefix,
)
except Exception as e:
print(f"Warning: Could not log usage data: {e}")
print("\n--- Tabular Duplicate Detection Complete ---")
print(f"Found {len(results_df)} duplicate matches")
print(f"\nOutput files saved to: {args.output_dir}")
if output_paths:
print("Generated Files:", sorted(output_paths))
else:
print(
"Error: Tabular duplicate detection requires CSV, Excel, or Parquet files."
)
print("Supported types: .csv, .xlsx, .xls, .parquet")
else:
print(f"Error: Invalid duplicate type '{args.duplicate_type}'.")
print("Valid options: 'pages' or 'tabular'")
except Exception as e:
print(f"\nAn error occurred during the duplicate detection workflow: {e}")
# Task 3: Textract Batch Operations
elif args.task == "textract":
print("--- Starting Textract Batch Operations Workflow... ---")
if not args.textract_action:
print("Error: --textract_action is required for textract task.")
print("Valid options: 'submit', 'retrieve', or 'list'")
return
try:
if args.textract_action == "submit":
from tools.textract_batch_call import (
analyse_document_with_textract_api,
load_in_textract_job_details,
)
# Submit document to Textract for analysis
if not args.input_file:
print("Error: --input_file is required for submit action.")
return
print(f"--- Submitting document to Textract: {args.input_file} ---")
start_time = time.time()
# Load existing job details
job_df = load_in_textract_job_details(
load_s3_jobs_loc=args.s3_textract_document_logs_subfolder,
load_local_jobs_loc=args.local_textract_document_logs_subfolder,
)
# Determine signature extraction options
signature_options = (
["Extract handwriting", "Extract signatures"]
if args.extract_signatures
else ["Extract handwriting"]
)
# Use configured bucket or override
textract_bucket = args.textract_bucket if args.textract_bucket else ""
# Submit the job
(
result_message,
job_id,
job_type,
successful_job_number,
is_textract_call,
total_pages,
task_textbox,
) = analyse_document_with_textract_api(
local_pdf_path=args.input_file,
s3_input_prefix=args.textract_input_prefix,
s3_output_prefix=args.textract_output_prefix,
job_df=job_df,
s3_bucket_name=textract_bucket,
general_s3_bucket_name=args.s3_bucket,
local_output_dir=args.output_dir,
handwrite_signature_checkbox=signature_options,
aws_region=args.aws_region,
)
end_time = time.time()
processing_time = end_time - start_time
print("\n--- Textract Job Submitted Successfully ---")
print(f"Job ID: {job_id}")
print(f"Job Type: {job_type}")
print(f"Message: {result_message}")
print(f"Results will be available in: {args.output_dir}")
# Log usage data if logger is available
if usage_logger:
try:
# Extract file name for logging
print("Saving logs to CSV")
doc_file_name = (
os.path.basename(args.input_file[0])
if args.display_file_names_in_logs
else "document"
)
data_file_name = ""
# Determine if this was a Textract API call
is_textract_call = True
args.ocr_method == "AWS Textract"
# Count API calls (approximate - would need to be tracked in the redaction function)
textract_queries = total_pages
comprehend_queries = 0
# Format handwriting/signature options
handwriting_signature = ""
log_redaction_usage(
logger=usage_logger,
session_hash=session_hash,
doc_file_name=doc_file_name,
data_file_name=data_file_name,
time_taken=processing_time,
total_pages=total_pages,
textract_queries=textract_queries,
pii_method=args.pii_detector,
comprehend_queries=comprehend_queries,
cost_code=args.cost_code,
handwriting_signature=handwriting_signature,
text_extraction_method=args.ocr_method,
is_textract_call=is_textract_call,
task=args.task,
save_to_dynamodb=args.save_logs_to_dynamodb,
save_to_s3=args.upload_logs_to_s3,
s3_bucket=args.s3_bucket,
s3_key_prefix=args.s3_logs_prefix,
)
except Exception as e:
print(f"Warning: Could not log usage data: {e}")
elif args.textract_action == "retrieve":
print(f"--- Retrieving Textract results for Job ID: {args.job_id} ---")
from tools.textract_batch_call import (
load_in_textract_job_details,
poll_whole_document_textract_analysis_progress_and_download,
)
# Retrieve results by job ID
if not args.job_id:
print("Error: --job_id is required for retrieve action.")
return
# Load existing job details to get job type
print("Loading existing job details...")
job_df = load_in_textract_job_details(
load_s3_jobs_loc=args.s3_textract_document_logs_subfolder,
load_local_jobs_loc=args.local_textract_document_logs_subfolder,
)
# Find job type from the dataframe
job_type = "document_text_detection" # default
if not job_df.empty and "job_id" in job_df.columns:
matching_jobs = job_df.loc[job_df["job_id"] == args.job_id]
if not matching_jobs.empty and "job_type" in matching_jobs.columns:
job_type = matching_jobs.iloc[0]["job_type"]
# Use configured bucket or override
textract_bucket = args.textract_bucket if args.textract_bucket else ""
# Poll for completion and download results
print("Polling for completion and downloading results...")
downloaded_file_path, job_status, updated_job_df, output_filename = (
poll_whole_document_textract_analysis_progress_and_download(
job_id=args.job_id,
job_type_dropdown=job_type,
s3_output_prefix=args.textract_output_prefix,
pdf_filename="", # Will be determined from job details
job_df=job_df,
s3_bucket_name=textract_bucket,
load_s3_jobs_loc=args.s3_textract_document_logs_subfolder,
load_local_jobs_loc=args.local_textract_document_logs_subfolder,
local_output_dir=args.output_dir,
poll_interval_seconds=args.poll_interval,
max_polling_attempts=args.max_poll_attempts,
)
)
print("\n--- Textract Results Retrieved Successfully ---")
print(f"Job Status: {job_status}")
print(f"Downloaded File: {downloaded_file_path}")
# print(f"Output Filename: {output_filename}")
elif args.textract_action == "list":
from tools.textract_batch_call import load_in_textract_job_details
# List recent Textract jobs
print("--- Listing Recent Textract Jobs ---")
job_df = load_in_textract_job_details(
load_s3_jobs_loc=args.s3_textract_document_logs_subfolder,
load_local_jobs_loc=args.local_textract_document_logs_subfolder,
)
if job_df.empty:
print("No recent Textract jobs found.")
else:
print(f"\nFound {len(job_df)} recent Textract jobs:")
print("-" * 80)
for _, job in job_df.iterrows():
print(f"Job ID: {job.get('job_id', 'N/A')}")
print(f"File: {job.get('file_name', 'N/A')}")
print(f"Type: {job.get('job_type', 'N/A')}")
print(f"Signatures: {job.get('signature_extraction', 'N/A')}")
print(f"Date: {job.get('job_date_time', 'N/A')}")
print("-" * 80)
else:
print(f"Error: Invalid textract_action '{args.textract_action}'.")
print("Valid options: 'submit', 'retrieve', or 'list'")
except Exception as e:
print(f"\nAn error occurred during the Textract workflow: {e}")
else:
print(f"Error: Invalid task '{args.task}'.")
print("Valid options: 'redact', 'deduplicate', or 'textract'")
if __name__ == "__main__":
main()
|