File size: 59,183 Bytes
aa5c211
 
d60759d
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d987c
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
d60759d
 
 
 
 
 
 
bafcf39
 
 
 
 
 
 
 
 
 
d60759d
 
 
 
 
bafcf39
d60759d
bafcf39
d60759d
 
 
bafcf39
 
 
 
 
 
d60759d
bafcf39
 
 
 
 
 
d60759d
 
 
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60759d
 
 
 
bafcf39
d60759d
 
 
bafcf39
 
d60759d
aa5c211
d60759d
 
aa5c211
 
 
 
 
d60759d
aa5c211
bafcf39
aa5c211
d60759d
aa5c211
 
bafcf39
aa5c211
 
 
 
 
bafcf39
aa5c211
bafcf39
084af54
 
 
 
 
 
 
 
 
 
 
 
 
d60759d
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5c211
d60759d
 
aa5c211
d60759d
 
aa5c211
d60759d
 
aa5c211
d60759d
 
aa5c211
d60759d
 
aa5c211
5b0fe2c
 
 
d60759d
 
aa5c211
d60759d
 
 
 
 
 
 
 
826ed50
 
d3e6a24
d60759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcf39
aa5c211
 
 
bafcf39
 
 
 
 
 
 
aa5c211
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5c211
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d987c
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5c211
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5c211
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5c211
d60759d
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5c211
 
 
 
 
 
 
 
 
d60759d
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60759d
d3e6a24
bafcf39
 
 
 
 
d3e6a24
bafcf39
d3e6a24
bafcf39
d3e6a24
bafcf39
d3e6a24
 
bafcf39
d60759d
 
 
 
 
 
 
 
bafcf39
d60759d
 
 
 
bafcf39
d60759d
 
 
 
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60759d
bafcf39
 
 
aa5c211
 
 
d60759d
bafcf39
d60759d
 
 
 
 
 
 
 
 
bafcf39
d60759d
bafcf39
d60759d
aa5c211
bafcf39
aa5c211
d60759d
aa5c211
d60759d
 
bafcf39
aa5c211
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5c211
bafcf39
 
 
 
 
 
 
 
 
aa5c211
 
 
 
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f183d
aa5c211
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5c211
d60759d
 
 
 
bafcf39
d60759d
 
 
 
 
bafcf39
 
 
 
 
d60759d
bafcf39
d60759d
 
bafcf39
d60759d
 
bafcf39
d60759d
bafcf39
 
 
 
 
 
 
 
 
d60759d
bafcf39
 
 
 
 
 
d60759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcf39
d60759d
 
 
bafcf39
aa5c211
 
d60759d
aa5c211
 
bafcf39
 
aa5c211
 
bafcf39
 
 
aa5c211
 
bafcf39
 
 
 
d60759d
aa5c211
d60759d
bafcf39
aa5c211
d60759d
bafcf39
 
 
 
 
 
 
 
 
 
d60759d
bafcf39
d60759d
 
 
 
aa5c211
 
 
d60759d
aa5c211
 
d60759d
aa5c211
 
 
bafcf39
aa5c211
 
d60759d
 
 
bafcf39
d60759d
 
 
 
 
 
bafcf39
 
 
 
 
 
d60759d
 
bafcf39
d60759d
 
bafcf39
d60759d
 
bafcf39
 
 
 
 
 
d60759d
 
bafcf39
d60759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcf39
d60759d
 
 
 
aa5c211
 
d60759d
aa5c211
 
bafcf39
 
aa5c211
 
bafcf39
 
 
 
aa5c211
 
 
bafcf39
 
 
aa5c211
 
bafcf39
aa5c211
 
d60759d
bafcf39
 
aa5c211
bafcf39
 
 
 
 
d60759d
 
bafcf39
d60759d
 
 
 
aa5c211
bafcf39
 
 
 
 
 
 
d60759d
aa5c211
 
 
 
d60759d
bafcf39
aa5c211
bafcf39
d60759d
 
 
aa5c211
 
 
bafcf39
 
 
aa5c211
bafcf39
 
 
aa5c211
d60759d
 
 
 
 
 
bafcf39
 
 
 
 
 
 
 
 
d60759d
 
bafcf39
d60759d
 
bafcf39
d60759d
 
 
bafcf39
d60759d
 
bafcf39
d60759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcf39
d60759d
 
 
bafcf39
 
aa5c211
d60759d
bafcf39
 
 
 
 
d60759d
 
bafcf39
 
 
 
 
 
 
 
d60759d
aa5c211
 
d60759d
 
 
 
bafcf39
aa5c211
d60759d
 
 
 
 
 
 
 
 
 
bafcf39
 
 
 
 
 
d60759d
 
bafcf39
d60759d
 
bafcf39
d60759d
 
 
bafcf39
d60759d
 
bafcf39
d60759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcf39
d60759d
 
 
bafcf39
aa5c211
 
 
bafcf39
 
 
aa5c211
bafcf39
 
 
aa5c211
 
 
 
bafcf39
aa5c211
 
d60759d
 
bafcf39
d60759d
bafcf39
d60759d
 
 
 
bafcf39
d60759d
bafcf39
 
 
 
 
 
d60759d
 
 
 
bafcf39
d60759d
 
 
bafcf39
d60759d
bafcf39
 
 
 
 
d60759d
bafcf39
 
 
 
 
 
d60759d
 
bafcf39
d60759d
bafcf39
 
 
 
 
 
 
 
 
d60759d
 
 
 
 
 
 
d3e6a24
bafcf39
d60759d
 
 
 
bafcf39
 
d60759d
 
 
 
 
 
 
 
 
 
bafcf39
 
 
 
 
d60759d
bafcf39
d60759d
 
 
bafcf39
d60759d
 
 
bafcf39
d60759d
 
bafcf39
d60759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcf39
d60759d
 
 
bafcf39
 
d60759d
 
bafcf39
 
 
 
 
d60759d
 
 
 
bafcf39
d60759d
 
bafcf39
 
 
 
 
d60759d
 
 
 
 
 
bafcf39
d60759d
 
bafcf39
d60759d
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
d60759d
bafcf39
 
d60759d
 
bafcf39
 
 
d60759d
bafcf39
d60759d
 
bafcf39
 
 
 
 
 
d60759d
 
 
 
 
 
 
 
 
 
 
 
bafcf39
d60759d
 
 
bafcf39
d60759d
 
bafcf39
aa5c211
 
d60759d
aa5c211
bafcf39
aa5c211
bafcf39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
import argparse
import os
import time
import uuid

import pandas as pd

from tools.config import (
    ALLOW_LIST_PATH,
    AWS_ACCESS_KEY,
    AWS_PII_OPTION,
    AWS_REGION,
    AWS_SECRET_KEY,
    CHOSEN_COMPREHEND_ENTITIES,
    CHOSEN_LOCAL_OCR_MODEL,
    CHOSEN_REDACT_ENTITIES,
    COMPRESS_REDACTED_PDF,
    CUSTOM_ENTITIES,
    DEFAULT_COMBINE_PAGES,
    DEFAULT_COST_CODE,
    DEFAULT_DUPLICATE_DETECTION_THRESHOLD,
    DEFAULT_FUZZY_SPELLING_MISTAKES_NUM,
    DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX,
    DEFAULT_LANGUAGE,
    DEFAULT_MIN_CONSECUTIVE_PAGES,
    DEFAULT_MIN_WORD_COUNT,
    DEFAULT_TABULAR_ANONYMISATION_STRATEGY,
    DENY_LIST_PATH,
    DIRECT_MODE_DEFAULT_USER,
    DISPLAY_FILE_NAMES_IN_LOGS,
    DO_INITIAL_TABULAR_DATA_CLEAN,
    DOCUMENT_REDACTION_BUCKET,
    FULL_COMPREHEND_ENTITY_LIST,
    FULL_ENTITY_LIST,
    IMAGES_DPI,
    INPUT_FOLDER,
    LOCAL_PII_OPTION,
    OUTPUT_FOLDER,
    PREPROCESS_LOCAL_OCR_IMAGES,
    REMOVE_DUPLICATE_ROWS,
    RETURN_REDACTED_PDF,
    RUN_AWS_FUNCTIONS,
    S3_USAGE_LOGS_FOLDER,
    SAVE_LOGS_TO_CSV,
    SAVE_LOGS_TO_DYNAMODB,
    SESSION_OUTPUT_FOLDER,
    TEXTRACT_JOBS_LOCAL_LOC,
    TEXTRACT_JOBS_S3_LOC,
    TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_BUCKET,
    TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER,
    TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER,
    USE_GREEDY_DUPLICATE_DETECTION,
    WHOLE_PAGE_REDACTION_LIST_PATH,
)


def _generate_session_hash() -> str:
    """Generate a unique session hash for logging purposes."""
    return str(uuid.uuid4())[:8]


def get_username_and_folders(
    username: str = "",
    output_folder_textbox: str = OUTPUT_FOLDER,
    input_folder_textbox: str = INPUT_FOLDER,
    session_output_folder: str = SESSION_OUTPUT_FOLDER,
    textract_document_upload_input_folder: str = TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER,
    textract_document_upload_output_folder: str = TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER,
    s3_textract_document_logs_subfolder: str = TEXTRACT_JOBS_S3_LOC,
    local_textract_document_logs_subfolder: str = TEXTRACT_JOBS_LOCAL_LOC,
):

    # Generate session hash for logging. Either from input user name or generated
    if username:
        out_session_hash = username
    else:
        out_session_hash = _generate_session_hash()

    if session_output_folder == "True" or session_output_folder is True:
        output_folder = output_folder_textbox + out_session_hash + "/"
        input_folder = input_folder_textbox + out_session_hash + "/"

        textract_document_upload_input_folder = (
            textract_document_upload_input_folder + "/" + out_session_hash
        )
        textract_document_upload_output_folder = (
            textract_document_upload_output_folder + "/" + out_session_hash
        )

        s3_textract_document_logs_subfolder = (
            s3_textract_document_logs_subfolder + "/" + out_session_hash
        )
        local_textract_document_logs_subfolder = (
            local_textract_document_logs_subfolder + "/" + out_session_hash + "/"
        )

    else:
        output_folder = output_folder_textbox
        input_folder = input_folder_textbox

    if not os.path.exists(output_folder):
        os.mkdir(output_folder)
    if not os.path.exists(input_folder):
        os.mkdir(input_folder)

    return (
        out_session_hash,
        output_folder,
        out_session_hash,
        input_folder,
        textract_document_upload_input_folder,
        textract_document_upload_output_folder,
        s3_textract_document_logs_subfolder,
        local_textract_document_logs_subfolder,
    )


def _get_env_list(env_var_name: str) -> list[str]:
    """Parses a comma-separated environment variable into a list of strings."""
    value = env_var_name[1:-1].strip().replace('"', "").replace("'", "")
    if not value:
        return []
    # Split by comma and filter out any empty strings that might result from extra commas
    return [s.strip() for s in value.split(",") if s.strip()]


# Add custom spacy recognisers to the Comprehend list, so that local Spacy model can be used to pick up e.g. titles, streetnames, UK postcodes that are sometimes missed by comprehend
CHOSEN_COMPREHEND_ENTITIES.extend(CUSTOM_ENTITIES)
FULL_COMPREHEND_ENTITY_LIST.extend(CUSTOM_ENTITIES)

chosen_redact_entities = CHOSEN_REDACT_ENTITIES
full_entity_list = FULL_ENTITY_LIST
chosen_comprehend_entities = CHOSEN_COMPREHEND_ENTITIES
full_comprehend_entity_list = FULL_COMPREHEND_ENTITY_LIST
default_handwrite_signature_checkbox = DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX


# --- Main CLI Function ---
def main(direct_mode_args={}):
    """
    A unified command-line interface to prepare, redact, and anonymise various document types.

    Args:
        direct_mode_args (dict, optional): Dictionary of arguments for direct mode execution.
                                          If provided, uses these instead of parsing command line arguments.
    """
    parser = argparse.ArgumentParser(
        description="A versatile CLI for redacting PII from PDF/image files and anonymising Word/tabular data.",
        formatter_class=argparse.RawTextHelpFormatter,
        epilog="""
Examples:

To run these, you need to do the following:

- Open a terminal window

- CD to the app folder that contains this file (cli_redact.py)

- Load the virtual environment using either conda or venv depending on your setup

- Run one of the example commands below

- Look in the output/ folder to see output files:

# Redaction

## Redact a PDF with default settings (local OCR):
python cli_redact.py --input_file example_data/example_of_emails_sent_to_a_professor_before_applying.pdf

## Extract text from a PDF only (i.e. no redaction), using local OCR:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --redact_whole_page_file example_data/partnership_toolkit_redact_some_pages.csv --pii_detector None

## Extract text from a PDF only (i.e. no redaction), using local OCR, with a whole page redaction list:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --redact_whole_page_file example_data/partnership_toolkit_redact_some_pages.csv --pii_detector Local --local_redact_entities CUSTOM

## Redact a PDF with allow list (local OCR) and custom list of redaction entities:
python cli_redact.py --input_file example_data/graduate-job-example-cover-letter.pdf --allow_list_file example_data/test_allow_list_graduate.csv --local_redact_entities TITLES PERSON DATE_TIME

## Redact a PDF with limited pages and text extraction method (local text) with custom fuzzy matching:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --deny_list_file example_data/Partnership-Agreement-Toolkit_test_deny_list_para_single_spell.csv --local_redact_entities CUSTOM_FUZZY --page_min 1 --page_max 3 --ocr_method "Local text" --fuzzy_mistakes 3

## Redaction with custom deny list, allow list, and whole page redaction list:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --deny_list_file example_data/partnership_toolkit_redact_custom_deny_list.csv --redact_whole_page_file example_data/partnership_toolkit_redact_some_pages.csv --allow_list_file example_data/test_allow_list_partnership.csv

## Redact an image:
python cli_redact.py --input_file example_data/example_complaint_letter.jpg

## Anonymise csv file with specific columns:
python cli_redact.py --input_file example_data/combined_case_notes.csv --text_columns "Case Note" "Client" --anon_strategy replace_redacted

## Anonymise csv file with a different strategy (remove text completely):
python cli_redact.py --input_file example_data/combined_case_notes.csv --text_columns "Case Note" "Client" --anon_strategy redact

## Anonymise Excel file, remove text completely:
python cli_redact.py --input_file example_data/combined_case_notes.xlsx --text_columns "Case Note" "Client" --excel_sheets combined_case_notes --anon_strategy redact

## Anonymise a word document:
python cli_redact.py --input_file "example_data/Bold minimalist professional cover letter.docx" --anon_strategy replace_redacted

# Redaction with AWS services:

## Use Textract and Comprehend::
python cli_redact.py --input_file example_data/example_of_emails_sent_to_a_professor_before_applying.pdf --ocr_method "AWS Textract" --pii_detector "AWS Comprehend"

## Redact specific pages with AWS OCR and signature extraction:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --page_min 6 --page_max 7 --ocr_method "AWS Textract" --handwrite_signature_extraction "Extract handwriting" "Extract signatures"

## Redact with AWS OCR and additional layout extraction options:
python cli_redact.py --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --ocr_method "AWS Textract" --extract_layout

# Duplicate page detection

## Find duplicate pages in OCR files:
python cli_redact.py --task deduplicate --input_file example_data/example_outputs/doubled_output_joined.pdf_ocr_output.csv --duplicate_type pages --similarity_threshold 0.95

## Find duplicate in OCR files at the line level:
python cli_redact.py --task deduplicate --input_file example_data/example_outputs/doubled_output_joined.pdf_ocr_output.csv --duplicate_type pages --similarity_threshold 0.95 --combine_pages False --min_word_count 3

## Find duplicate rows in tabular data:
python cli_redact.py --task deduplicate --input_file example_data/Lambeth_2030-Our_Future_Our_Lambeth.pdf.csv --duplicate_type tabular --text_columns "text" --similarity_threshold 0.95

# AWS Textract whole document analysis

## Submit document to Textract for basic text analysis:
python cli_redact.py --task textract --textract_action submit --input_file example_data/example_of_emails_sent_to_a_professor_before_applying.pdf

## Submit document to Textract for analysis with signature extraction (Job ID will be printed to the console, you need this to retrieve the results):
python cli_redact.py --task textract --textract_action submit --input_file example_data/Partnership-Agreement-Toolkit_0_0.pdf --extract_signatures 

## Retrieve Textract results by job ID (returns a .json file output):
python cli_redact.py --task textract --textract_action retrieve --job_id 12345678-1234-1234-1234-123456789012

## List recent Textract jobs:
python cli_redact.py --task textract --textract_action list

""",
    )

    # --- Task Selection ---
    task_group = parser.add_argument_group("Task Selection")
    task_group.add_argument(
        "--task",
        choices=["redact", "deduplicate", "textract"],
        default="redact",
        help="Task to perform: redact (PII redaction/anonymisation), deduplicate (find duplicate content), or textract (AWS Textract batch operations).",
    )

    # --- General Arguments (apply to all file types) ---
    general_group = parser.add_argument_group("General Options")
    general_group.add_argument(
        "--input_file",
        nargs="+",
        help="Path to the input file(s) to process. Separate multiple files with a space, and use quotes if there are spaces in the file name.",
    )
    general_group.add_argument(
        "--output_dir", default=OUTPUT_FOLDER, help="Directory for all output files."
    )
    general_group.add_argument(
        "--input_dir", default=INPUT_FOLDER, help="Directory for all input files."
    )
    general_group.add_argument(
        "--language", default=DEFAULT_LANGUAGE, help="Language of the document content."
    )
    general_group.add_argument(
        "--allow_list",
        default=ALLOW_LIST_PATH,
        help="Path to a CSV file with words to exclude from redaction.",
    )
    general_group.add_argument(
        "--pii_detector",
        choices=[LOCAL_PII_OPTION, AWS_PII_OPTION, "None"],
        default=LOCAL_PII_OPTION,
        help="Core PII detection method (Local or AWS Comprehend, or None).",
    )
    general_group.add_argument(
        "--username", default=DIRECT_MODE_DEFAULT_USER, help="Username for the session."
    )
    general_group.add_argument(
        "--save_to_user_folders",
        default=SESSION_OUTPUT_FOLDER,
        help="Whether to save to user folders or not.",
    )

    general_group.add_argument(
        "--local_redact_entities",
        nargs="+",
        choices=full_entity_list,
        default=chosen_redact_entities,
        help=f"Local redaction entities to use. Default: {chosen_redact_entities}. Full list: {full_entity_list}.",
    )

    general_group.add_argument(
        "--aws_redact_entities",
        nargs="+",
        choices=full_comprehend_entity_list,
        default=chosen_comprehend_entities,
        help=f"AWS redaction entities to use. Default: {chosen_comprehend_entities}. Full list: {full_comprehend_entity_list}.",
    )

    general_group.add_argument(
        "--aws_access_key", default=AWS_ACCESS_KEY, help="Your AWS Access Key ID."
    )
    general_group.add_argument(
        "--aws_secret_key", default=AWS_SECRET_KEY, help="Your AWS Secret Access Key."
    )
    general_group.add_argument(
        "--cost_code", default=DEFAULT_COST_CODE, help="Cost code for tracking usage."
    )
    general_group.add_argument(
        "--aws_region", default=AWS_REGION, help="AWS region for cloud services."
    )
    general_group.add_argument(
        "--s3_bucket",
        default=DOCUMENT_REDACTION_BUCKET,
        help="S3 bucket name for cloud operations.",
    )
    general_group.add_argument(
        "--do_initial_clean",
        default=DO_INITIAL_TABULAR_DATA_CLEAN,
        help="Perform initial text cleaning for tabular data.",
    )
    general_group.add_argument(
        "--save_logs_to_csv",
        default=SAVE_LOGS_TO_CSV,
        help="Save processing logs to CSV files.",
    )
    general_group.add_argument(
        "--save_logs_to_dynamodb",
        default=SAVE_LOGS_TO_DYNAMODB,
        help="Save processing logs to DynamoDB.",
    )
    general_group.add_argument(
        "--display_file_names_in_logs",
        default=DISPLAY_FILE_NAMES_IN_LOGS,
        help="Include file names in log outputs.",
    )
    general_group.add_argument(
        "--upload_logs_to_s3",
        default=RUN_AWS_FUNCTIONS == "1",
        help="Upload log files to S3 after processing.",
    )
    general_group.add_argument(
        "--s3_logs_prefix",
        default=S3_USAGE_LOGS_FOLDER,
        help="S3 prefix for usage log files.",
    )

    # --- PDF/Image Redaction Arguments ---
    pdf_group = parser.add_argument_group(
        "PDF/Image Redaction Options (.pdf, .png, .jpg)"
    )
    pdf_group.add_argument(
        "--ocr_method",
        choices=["AWS Textract", "Local OCR", "Local text"],
        default="Local OCR",
        help="OCR method for text extraction from images.",
    )
    pdf_group.add_argument(
        "--page_min", type=int, default=0, help="First page to redact."
    )
    pdf_group.add_argument(
        "--page_max", type=int, default=0, help="Last page to redact."
    )
    pdf_group.add_argument(
        "--images_dpi",
        type=float,
        default=float(IMAGES_DPI),
        help="DPI for image processing.",
    )
    pdf_group.add_argument(
        "--chosen_local_ocr_model",
        choices=["tesseract", "hybrid", "paddle"],
        default=CHOSEN_LOCAL_OCR_MODEL,
        help="Local OCR model to use.",
    )
    pdf_group.add_argument(
        "--preprocess_local_ocr_images",
        default=PREPROCESS_LOCAL_OCR_IMAGES,
        help="Preprocess images before OCR.",
    )
    pdf_group.add_argument(
        "--compress_redacted_pdf",
        default=COMPRESS_REDACTED_PDF,
        help="Compress the final redacted PDF.",
    )
    pdf_group.add_argument(
        "--return_pdf_end_of_redaction",
        default=RETURN_REDACTED_PDF,
        help="Return PDF at end of redaction process.",
    )
    pdf_group.add_argument(
        "--deny_list_file",
        default=DENY_LIST_PATH,
        help="Custom words file to recognize for redaction.",
    )
    pdf_group.add_argument(
        "--allow_list_file",
        default=ALLOW_LIST_PATH,
        help="Custom words file to recognize for redaction.",
    )
    pdf_group.add_argument(
        "--redact_whole_page_file",
        default=WHOLE_PAGE_REDACTION_LIST_PATH,
        help="File for pages to redact completely.",
    )
    pdf_group.add_argument(
        "--handwrite_signature_extraction",
        nargs="+",
        default=default_handwrite_signature_checkbox,
        help='Handwriting and signature extraction options. Choose from "Extract handwriting", "Extract signatures".',
    )
    pdf_group.add_argument(
        "--extract_forms",
        action="store_true",
        help="Extract forms during Textract analysis.",
    )
    pdf_group.add_argument(
        "--extract_tables",
        action="store_true",
        help="Extract tables during Textract analysis.",
    )
    pdf_group.add_argument(
        "--extract_layout",
        action="store_true",
        help="Extract layout during Textract analysis.",
    )

    # --- Word/Tabular Anonymisation Arguments ---
    tabular_group = parser.add_argument_group(
        "Word/Tabular Anonymisation Options (.docx, .csv, .xlsx)"
    )
    tabular_group.add_argument(
        "--anon_strategy",
        choices=[
            "redact",
            "redact completely",
            "replace_redacted",
            "entity_type",
            "encrypt",
            "hash",
            "replace with 'REDACTED'",
            "replace with <ENTITY_NAME>",
            "mask",
            "fake_first_name",
        ],
        default=DEFAULT_TABULAR_ANONYMISATION_STRATEGY,
        help="The anonymisation strategy to apply.",
    )
    tabular_group.add_argument(
        "--text_columns",
        nargs="+",
        default=list(),
        help="A list of column names to anonymise or deduplicate in tabular data.",
    )
    tabular_group.add_argument(
        "--excel_sheets",
        nargs="+",
        default=list(),
        help="Specific Excel sheet names to process.",
    )
    tabular_group.add_argument(
        "--fuzzy_mistakes",
        type=int,
        default=DEFAULT_FUZZY_SPELLING_MISTAKES_NUM,
        help="Number of allowed spelling mistakes for fuzzy matching.",
    )
    tabular_group.add_argument(
        "--match_fuzzy_whole_phrase_bool",
        default=True,
        help="Match fuzzy whole phrase boolean.",
    )
    # --- Duplicate Detection Arguments ---
    duplicate_group = parser.add_argument_group("Duplicate Detection Options")
    duplicate_group.add_argument(
        "--duplicate_type",
        choices=["pages", "tabular"],
        default="pages",
        help="Type of duplicate detection: pages (for OCR files) or tabular (for CSV/Excel files).",
    )
    duplicate_group.add_argument(
        "--similarity_threshold",
        type=float,
        default=DEFAULT_DUPLICATE_DETECTION_THRESHOLD,
        help="Similarity threshold (0-1) to consider content as duplicates.",
    )
    duplicate_group.add_argument(
        "--min_word_count",
        type=int,
        default=DEFAULT_MIN_WORD_COUNT,
        help="Minimum word count for text to be considered in duplicate analysis.",
    )
    duplicate_group.add_argument(
        "--min_consecutive_pages",
        type=int,
        default=DEFAULT_MIN_CONSECUTIVE_PAGES,
        help="Minimum number of consecutive pages to consider as a match.",
    )
    duplicate_group.add_argument(
        "--greedy_match",
        default=USE_GREEDY_DUPLICATE_DETECTION,
        help="Use greedy matching strategy for consecutive pages.",
    )
    duplicate_group.add_argument(
        "--combine_pages",
        default=DEFAULT_COMBINE_PAGES,
        help="Combine text from the same page number within a file. Alternative will enable line-level duplicate detection.",
    )
    duplicate_group.add_argument(
        "--remove_duplicate_rows",
        default=REMOVE_DUPLICATE_ROWS,
        help="Remove duplicate rows from the output.",
    )

    # --- Textract Batch Operations Arguments ---
    textract_group = parser.add_argument_group("Textract Batch Operations Options")
    textract_group.add_argument(
        "--textract_action",
        choices=["submit", "retrieve", "list"],
        help="Textract action to perform: submit (submit document for analysis), retrieve (get results by job ID), or list (show recent jobs).",
    )
    textract_group.add_argument("--job_id", help="Textract job ID for retrieve action.")
    textract_group.add_argument(
        "--extract_signatures",
        action="store_true",
        help="Extract signatures during Textract analysis (for submit action).",
    )
    textract_group.add_argument(
        "--textract_bucket",
        default=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_BUCKET,
        help="S3 bucket name for Textract operations (overrides default).",
    )
    textract_group.add_argument(
        "--textract_input_prefix",
        default=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER,
        help="S3 prefix for input files in Textract operations.",
    )
    textract_group.add_argument(
        "--textract_output_prefix",
        default=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER,
        help="S3 prefix for output files in Textract operations.",
    )
    textract_group.add_argument(
        "--s3_textract_document_logs_subfolder",
        default=TEXTRACT_JOBS_S3_LOC,
        help="S3 prefix for logs in Textract operations.",
    )
    textract_group.add_argument(
        "--local_textract_document_logs_subfolder",
        default=TEXTRACT_JOBS_LOCAL_LOC,
        help="Local prefix for logs in Textract operations.",
    )
    textract_group.add_argument(
        "--poll_interval",
        type=int,
        default=30,
        help="Polling interval in seconds for Textract job status.",
    )
    textract_group.add_argument(
        "--max_poll_attempts",
        type=int,
        default=120,
        help="Maximum number of polling attempts for Textract job completion.",
    )
    # Parse arguments - either from command line or direct mode
    if direct_mode_args:
        # Use direct mode arguments
        args = argparse.Namespace(**direct_mode_args)
    else:
        # Parse command line arguments
        args = parser.parse_args()

    # --- Initial Setup ---
    # Convert string boolean variables to boolean
    if args.preprocess_local_ocr_images == "True":
        args.preprocess_local_ocr_images = True
    else:
        args.preprocess_local_ocr_images = False
    if args.greedy_match == "True":
        args.greedy_match = True
    else:
        args.greedy_match = False
    if args.combine_pages == "True":
        args.combine_pages = True
    else:
        args.combine_pages = False
    if args.remove_duplicate_rows == "True":
        args.remove_duplicate_rows = True
    else:
        args.remove_duplicate_rows = False
    if args.return_pdf_end_of_redaction == "True":
        args.return_pdf_end_of_redaction = True
    else:
        args.return_pdf_end_of_redaction = False
    if args.compress_redacted_pdf == "True":
        args.compress_redacted_pdf = True
    else:
        args.compress_redacted_pdf = False
    if args.do_initial_clean == "True":
        args.do_initial_clean = True
    else:
        args.do_initial_clean = False
    if args.save_logs_to_csv == "True":
        args.save_logs_to_csv = True
    else:
        args.save_logs_to_csv = False
    if args.save_logs_to_dynamodb == "True":
        args.save_logs_to_dynamodb = True
    else:
        args.save_logs_to_dynamodb = False
    if args.display_file_names_in_logs == "True":
        args.display_file_names_in_logs = True
    else:
        args.display_file_names_in_logs = False
    if args.match_fuzzy_whole_phrase_bool == "True":
        args.match_fuzzy_whole_phrase_bool = True
    else:
        args.match_fuzzy_whole_phrase_bool = False
    if args.save_to_user_folders == "True":
        args.save_to_user_folders = True
    else:
        args.save_to_user_folders = False

    # Combine extraction options
    extraction_options = (
        list(args.handwrite_signature_extraction)
        if args.handwrite_signature_extraction
        else []
    )
    if args.extract_forms:
        extraction_options.append("Extract forms")
    if args.extract_tables:
        extraction_options.append("Extract tables")
    if args.extract_layout:
        extraction_options.append("Extract layout")
    args.handwrite_signature_extraction = extraction_options

    if args.task in ["redact", "deduplicate"]:
        if args.input_file:
            if isinstance(args.input_file, str):
                args.input_file = [args.input_file]

            _, file_extension = os.path.splitext(args.input_file[0])
            file_extension = file_extension.lower()
        else:
            raise ValueError("Error: --input_file is required for 'redact' task.")

    # Initialise usage logger if logging is enabled
    usage_logger = None
    if args.save_logs_to_csv or args.save_logs_to_dynamodb:
        from tools.cli_usage_logger import create_cli_usage_logger

        try:
            usage_logger = create_cli_usage_logger()
        except Exception as e:
            print(f"Warning: Could not initialise usage logger: {e}")

    # Get username and folders
    (
        session_hash,
        args.output_dir,
        _,
        args.input_dir,
        args.textract_input_prefix,
        args.textract_output_prefix,
        args.s3_textract_document_logs_subfolder,
        args.local_textract_document_logs_subfolder,
    ) = get_username_and_folders(
        username=args.username,
        output_folder_textbox=args.output_dir,
        input_folder_textbox=args.input_dir,
        session_output_folder=args.save_to_user_folders,
        textract_document_upload_input_folder=args.textract_input_prefix,
        textract_document_upload_output_folder=args.textract_output_prefix,
        s3_textract_document_logs_subfolder=args.s3_textract_document_logs_subfolder,
        local_textract_document_logs_subfolder=args.local_textract_document_logs_subfolder,
    )

    print(
        f"Conducting analyses with user {args.username}. Outputs will be saved to {args.output_dir}."
    )

    # --- Route to the Correct Workflow Based on Task and File Type ---

    # Validate input_file requirement for tasks that need it
    if args.task in ["redact", "deduplicate"] and not args.input_file:
        print(f"Error: --input_file is required for '{args.task}' task.")
        return

    if args.ocr_method in ["Local OCR", "AWS Textract"]:
        args.prepare_images = True
    else:
        args.prepare_images = False

    from tools.cli_usage_logger import create_cli_usage_logger, log_redaction_usage

    # Task 1: Redaction/Anonymisation
    if args.task == "redact":

        # Workflow 1: PDF/Image Redaction
        if file_extension in [".pdf", ".png", ".jpg", ".jpeg"]:
            print("--- Detected PDF/Image file. Starting Redaction Workflow... ---")
            start_time = time.time()
            try:
                from tools.file_conversion import prepare_image_or_pdf
                from tools.file_redaction import choose_and_run_redactor

                # Step 1: Prepare the document
                print("\nStep 1: Preparing document...")
                (
                    prep_summary,
                    prepared_pdf_paths,
                    image_file_paths,
                    _,
                    _,
                    pdf_doc,
                    image_annotations,
                    _,
                    original_cropboxes,
                    page_sizes,
                    _,
                    _,
                    _,
                    _,
                    _,
                ) = prepare_image_or_pdf(
                    file_paths=args.input_file,
                    text_extract_method=args.ocr_method,
                    all_line_level_ocr_results_df=pd.DataFrame(),
                    all_page_line_level_ocr_results_with_words_df=pd.DataFrame(),
                    first_loop_state=True,
                    prepare_for_review=False,
                    output_folder=args.output_dir,
                    input_folder=args.input_dir,
                    prepare_images=args.prepare_images,
                )
                print(f"Preparation complete. {prep_summary}")

                # Step 2: Redact the prepared document
                print("\nStep 2: Running redaction...")
                (
                    output_summary,
                    output_files,
                    _,
                    _,
                    log_files,
                    _,
                    _,
                    _,
                    _,
                    _,
                    _,
                    _,
                    _,
                    _,
                    comprehend_query_number,
                    _,
                    _,
                    _,
                    _,
                    _,
                    _,
                    page_sizes,
                    _,
                    _,
                    _,
                    total_textract_query_number,
                    _,
                    _,
                    _,
                    _,
                    _,
                    _,
                    _,
                ) = choose_and_run_redactor(
                    file_paths=args.input_file,
                    prepared_pdf_file_paths=prepared_pdf_paths,
                    pdf_image_file_paths=image_file_paths,
                    chosen_redact_entities=args.local_redact_entities,
                    chosen_redact_comprehend_entities=args.aws_redact_entities,
                    text_extraction_method=args.ocr_method,
                    in_allow_list=args.allow_list_file,
                    in_deny_list=args.deny_list_file,
                    redact_whole_page_list=args.redact_whole_page_file,
                    first_loop_state=True,
                    page_min=args.page_min,
                    page_max=args.page_max,
                    handwrite_signature_checkbox=args.handwrite_signature_extraction,
                    max_fuzzy_spelling_mistakes_num=args.fuzzy_mistakes,
                    match_fuzzy_whole_phrase_bool=args.match_fuzzy_whole_phrase_bool,
                    pymupdf_doc=pdf_doc,
                    annotations_all_pages=image_annotations,
                    page_sizes=page_sizes,
                    document_cropboxes=original_cropboxes,
                    pii_identification_method=args.pii_detector,
                    aws_access_key_textbox=args.aws_access_key,
                    aws_secret_key_textbox=args.aws_secret_key,
                    language=args.language,
                    output_folder=args.output_dir,
                    input_folder=args.input_dir,
                )

                # Calculate processing time
                end_time = time.time()
                processing_time = end_time - start_time

                # Log usage data if logger is available
                if usage_logger:
                    try:
                        # Extract file name for logging
                        print("Saving logs to CSV")
                        doc_file_name = (
                            os.path.basename(args.input_file[0])
                            if args.display_file_names_in_logs
                            else "document"
                        )
                        data_file_name = ""  # Not applicable for PDF/image redaction

                        # Determine if this was a Textract API call
                        is_textract_call = args.ocr_method == "AWS Textract"

                        # Count pages (approximate from page_sizes if available)
                        total_pages = len(page_sizes) if page_sizes else 1

                        # Count API calls (approximate - would need to be tracked in the redaction function)
                        textract_queries = (
                            int(total_textract_query_number) if is_textract_call else 0
                        )
                        comprehend_queries = (
                            int(comprehend_query_number)
                            if args.pii_detector == "AWS Comprehend"
                            else 0
                        )

                        # Format handwriting/signature options
                        handwriting_signature = (
                            ", ".join(args.handwrite_signature_extraction)
                            if args.handwrite_signature_extraction
                            else ""
                        )

                        log_redaction_usage(
                            logger=usage_logger,
                            session_hash=session_hash,
                            doc_file_name=doc_file_name,
                            data_file_name=data_file_name,
                            time_taken=processing_time,
                            total_pages=total_pages,
                            textract_queries=textract_queries,
                            pii_method=args.pii_detector,
                            comprehend_queries=comprehend_queries,
                            cost_code=args.cost_code,
                            handwriting_signature=handwriting_signature,
                            text_extraction_method=args.ocr_method,
                            is_textract_call=is_textract_call,
                            task=args.task,
                            save_to_dynamodb=args.save_logs_to_dynamodb,
                            save_to_s3=args.upload_logs_to_s3,
                            s3_bucket=args.s3_bucket,
                            s3_key_prefix=args.s3_logs_prefix,
                        )
                    except Exception as e:
                        print(f"Warning: Could not log usage data: {e}")

                print("\n--- Redaction Process Complete ---")
                print(f"Summary: {output_summary}")
                print(f"Processing time: {processing_time:.2f} seconds")
                print(f"\nOutput files saved to: {args.output_dir}")
                print("Generated Files:", sorted(output_files))
                if log_files:
                    print("Log Files:", sorted(log_files))

            except Exception as e:
                print(
                    f"\nAn error occurred during the PDF/Image redaction workflow: {e}"
                )

        # Workflow 2: Word/Tabular Data Anonymisation
        elif file_extension in [".docx", ".xlsx", ".xls", ".csv", ".parquet"]:
            print(
                "--- Detected Word/Tabular file. Starting Anonymisation Workflow... ---"
            )
            start_time = time.time()
            try:
                from tools.data_anonymise import anonymise_files_with_open_text

                # Run the anonymisation function directly

                (
                    output_summary,
                    output_files,
                    _,
                    _,
                    log_files,
                    _,
                    processing_time,
                    comprehend_query_number,
                ) = anonymise_files_with_open_text(
                    file_paths=args.input_file,
                    in_text="",  # Not used for file-based operations
                    anon_strategy=args.anon_strategy,
                    chosen_cols=args.text_columns,
                    chosen_redact_entities=args.local_redact_entities,
                    in_allow_list=args.allow_list_file,
                    in_excel_sheets=args.excel_sheets,
                    first_loop_state=True,
                    output_folder=args.output_dir,
                    in_deny_list=args.deny_list_file,
                    max_fuzzy_spelling_mistakes_num=args.fuzzy_mistakes,
                    pii_identification_method=args.pii_detector,
                    chosen_redact_comprehend_entities=args.aws_redact_entities,
                    aws_access_key_textbox=args.aws_access_key,
                    aws_secret_key_textbox=args.aws_secret_key,
                    language=args.language,
                    do_initial_clean=args.do_initial_clean,
                )

                # Calculate processing time
                end_time = time.time()
                processing_time = end_time - start_time

                # Log usage data if logger is available
                if usage_logger:
                    try:
                        print("Saving logs to CSV")
                        # Extract file name for logging
                        doc_file_name = ""  # Not applicable for tabular data
                        data_file_name = (
                            os.path.basename(args.input_file[0])
                            if args.display_file_names_in_logs
                            else "data_file"
                        )

                        # Determine if this was a Textract API call (not applicable for tabular)
                        is_textract_call = False

                        # Count pages (not applicable for tabular data)
                        total_pages = 0

                        # Count API calls (approximate - would need to be tracked in the anonymisation function)
                        textract_queries = 0  # Not applicable for tabular data
                        comprehend_queries = (
                            comprehend_query_number
                            if args.pii_detector == "AWS Comprehend"
                            else 0
                        )

                        # Format handwriting/signature options (not applicable for tabular)
                        handwriting_signature = ""

                        log_redaction_usage(
                            logger=usage_logger,
                            session_hash=session_hash,
                            doc_file_name=doc_file_name,
                            data_file_name=data_file_name,
                            time_taken=processing_time,
                            total_pages=total_pages,
                            textract_queries=textract_queries,
                            pii_method=args.pii_detector,
                            comprehend_queries=comprehend_queries,
                            cost_code=args.cost_code,
                            handwriting_signature=handwriting_signature,
                            text_extraction_method="tabular",  # Indicate this is tabular processing
                            is_textract_call=is_textract_call,
                            task=args.task,
                            save_to_dynamodb=args.save_logs_to_dynamodb,
                            save_to_s3=args.upload_logs_to_s3,
                            s3_bucket=args.s3_bucket,
                            s3_key_prefix=args.s3_logs_prefix,
                        )
                    except Exception as e:
                        print(f"Warning: Could not log usage data: {e}")

                print("\n--- Anonymisation Process Complete ---")
                print(f"Summary: {output_summary}")
                print(f"Processing time: {processing_time:.2f} seconds")
                print(f"\nOutput files saved to: {args.output_dir}")
                print("Generated Files:", sorted(output_files))
                if log_files:
                    print("Log Files:", sorted(log_files))

            except Exception as e:
                print(
                    f"\nAn error occurred during the Word/Tabular anonymisation workflow: {e}"
                )

        else:
            print(f"Error: Unsupported file type '{file_extension}' for redaction.")
            print("Supported types for redaction: .pdf, .png, .jpg, .jpeg")
            print(
                "Supported types for anonymisation: .docx, .xlsx, .xls, .csv, .parquet"
            )

    # Task 2: Duplicate Detection
    elif args.task == "deduplicate":
        print("--- Starting Duplicate Detection Workflow... ---")
        try:
            from tools.find_duplicate_pages import run_duplicate_analysis

            if args.duplicate_type == "pages":
                # Page duplicate detection
                if file_extension == ".csv":
                    print(
                        "--- Detected OCR CSV file. Starting Page Duplicate Detection... ---"
                    )

                    start_time = time.time()

                    if args.combine_pages is True:
                        print("Combining pages...")
                    else:
                        print("Using line-level duplicate detection...")

                    # Load the CSV file as a list for the duplicate analysis function
                    (
                        results_df,
                        output_paths,
                        full_data_by_file,
                        processing_time,
                        task_textbox,
                    ) = run_duplicate_analysis(
                        files=args.input_file,
                        threshold=args.similarity_threshold,
                        min_words=args.min_word_count,
                        min_consecutive=args.min_consecutive_pages,
                        greedy_match=args.greedy_match,
                        combine_pages=args.combine_pages,
                        output_folder=args.output_dir,
                    )

                    end_time = time.time()
                    processing_time = end_time - start_time

                    print("\n--- Page Duplicate Detection Complete ---")
                    print(f"Found {len(results_df)} duplicate matches")
                    print(f"\nOutput files saved to: {args.output_dir}")
                    if output_paths:
                        print("Generated Files:", sorted(output_paths))

                else:
                    print(
                        "Error: Page duplicate detection requires CSV files with OCR data."
                    )
                    print("Please provide a CSV file containing OCR output data.")

                    # Log usage data if logger is available
                    if usage_logger:
                        try:
                            # Extract file name for logging
                            print("Saving logs to CSV")
                            doc_file_name = (
                                os.path.basename(args.input_file[0])
                                if args.display_file_names_in_logs
                                else "document"
                            )
                            data_file_name = (
                                ""  # Not applicable for PDF/image redaction
                            )

                            # Determine if this was a Textract API call
                            is_textract_call = False

                            # Count pages (approximate from page_sizes if available)
                            total_pages = len(page_sizes) if page_sizes else 1

                            # Count API calls (approximate - would need to be tracked in the redaction function)
                            textract_queries = 0
                            comprehend_queries = 0

                            # Format handwriting/signature options
                            handwriting_signature = ""

                            log_redaction_usage(
                                logger=usage_logger,
                                session_hash=session_hash,
                                doc_file_name=doc_file_name,
                                data_file_name=data_file_name,
                                time_taken=processing_time,
                                total_pages=total_pages,
                                textract_queries=textract_queries,
                                pii_method=args.pii_detector,
                                comprehend_queries=comprehend_queries,
                                cost_code=args.cost_code,
                                handwriting_signature=handwriting_signature,
                                text_extraction_method=args.ocr_method,
                                is_textract_call=is_textract_call,
                                task=args.task,
                                save_to_dynamodb=args.save_logs_to_dynamodb,
                                save_to_s3=args.upload_logs_to_s3,
                                s3_bucket=args.s3_bucket,
                                s3_key_prefix=args.s3_logs_prefix,
                            )
                        except Exception as e:
                            print(f"Warning: Could not log usage data: {e}")

            elif args.duplicate_type == "tabular":
                # Tabular duplicate detection
                from tools.find_duplicate_tabular import run_tabular_duplicate_detection

                if file_extension in [".csv", ".xlsx", ".xls", ".parquet"]:
                    print(
                        "--- Detected tabular file. Starting Tabular Duplicate Detection... ---"
                    )

                    start_time = time.time()

                    (
                        results_df,
                        output_paths,
                        full_data_by_file,
                        processing_time,
                        task_textbox,
                    ) = run_tabular_duplicate_detection(
                        files=args.input_file,
                        threshold=args.similarity_threshold,
                        min_words=args.min_word_count,
                        text_columns=args.text_columns,
                        output_folder=args.output_dir,
                        do_initial_clean_dup=args.do_initial_clean,
                        in_excel_tabular_sheets=args.excel_sheets,
                        remove_duplicate_rows=args.remove_duplicate_rows,
                    )

                    end_time = time.time()
                    processing_time = end_time - start_time

                    # Log usage data if logger is available
                    if usage_logger:
                        try:
                            # Extract file name for logging
                            print("Saving logs to CSV")
                            doc_file_name = ""
                            data_file_name = (
                                os.path.basename(args.input_file[0])
                                if args.display_file_names_in_logs
                                else "data_file"
                            )

                            # Determine if this was a Textract API call
                            is_textract_call = False

                            # Count pages (approximate from page_sizes if available)
                            total_pages = len(page_sizes) if page_sizes else 1

                            # Count API calls (approximate - would need to be tracked in the redaction function)
                            textract_queries = 0
                            comprehend_queries = 0

                            # Format handwriting/signature options
                            handwriting_signature = ""

                            log_redaction_usage(
                                logger=usage_logger,
                                session_hash=session_hash,
                                doc_file_name=doc_file_name,
                                data_file_name=data_file_name,
                                time_taken=processing_time,
                                total_pages=total_pages,
                                textract_queries=textract_queries,
                                pii_method=args.pii_detector,
                                comprehend_queries=comprehend_queries,
                                cost_code=args.cost_code,
                                handwriting_signature=handwriting_signature,
                                text_extraction_method=args.ocr_method,
                                is_textract_call=is_textract_call,
                                task=args.task,
                                save_to_dynamodb=args.save_logs_to_dynamodb,
                                save_to_s3=args.upload_logs_to_s3,
                                s3_bucket=args.s3_bucket,
                                s3_key_prefix=args.s3_logs_prefix,
                            )
                        except Exception as e:
                            print(f"Warning: Could not log usage data: {e}")

                    print("\n--- Tabular Duplicate Detection Complete ---")
                    print(f"Found {len(results_df)} duplicate matches")
                    print(f"\nOutput files saved to: {args.output_dir}")
                    if output_paths:
                        print("Generated Files:", sorted(output_paths))

                else:
                    print(
                        "Error: Tabular duplicate detection requires CSV, Excel, or Parquet files."
                    )
                    print("Supported types: .csv, .xlsx, .xls, .parquet")
            else:
                print(f"Error: Invalid duplicate type '{args.duplicate_type}'.")
                print("Valid options: 'pages' or 'tabular'")

        except Exception as e:
            print(f"\nAn error occurred during the duplicate detection workflow: {e}")

    # Task 3: Textract Batch Operations
    elif args.task == "textract":
        print("--- Starting Textract Batch Operations Workflow... ---")

        if not args.textract_action:
            print("Error: --textract_action is required for textract task.")
            print("Valid options: 'submit', 'retrieve', or 'list'")
            return

        try:
            if args.textract_action == "submit":
                from tools.textract_batch_call import (
                    analyse_document_with_textract_api,
                    load_in_textract_job_details,
                )

                # Submit document to Textract for analysis
                if not args.input_file:
                    print("Error: --input_file is required for submit action.")
                    return

                print(f"--- Submitting document to Textract: {args.input_file} ---")

                start_time = time.time()

                # Load existing job details
                job_df = load_in_textract_job_details(
                    load_s3_jobs_loc=args.s3_textract_document_logs_subfolder,
                    load_local_jobs_loc=args.local_textract_document_logs_subfolder,
                )

                # Determine signature extraction options
                signature_options = (
                    ["Extract handwriting", "Extract signatures"]
                    if args.extract_signatures
                    else ["Extract handwriting"]
                )

                # Use configured bucket or override
                textract_bucket = args.textract_bucket if args.textract_bucket else ""

                # Submit the job
                (
                    result_message,
                    job_id,
                    job_type,
                    successful_job_number,
                    is_textract_call,
                    total_pages,
                    task_textbox,
                ) = analyse_document_with_textract_api(
                    local_pdf_path=args.input_file,
                    s3_input_prefix=args.textract_input_prefix,
                    s3_output_prefix=args.textract_output_prefix,
                    job_df=job_df,
                    s3_bucket_name=textract_bucket,
                    general_s3_bucket_name=args.s3_bucket,
                    local_output_dir=args.output_dir,
                    handwrite_signature_checkbox=signature_options,
                    aws_region=args.aws_region,
                )

                end_time = time.time()
                processing_time = end_time - start_time

                print("\n--- Textract Job Submitted Successfully ---")
                print(f"Job ID: {job_id}")
                print(f"Job Type: {job_type}")
                print(f"Message: {result_message}")
                print(f"Results will be available in: {args.output_dir}")

                # Log usage data if logger is available
                if usage_logger:
                    try:
                        # Extract file name for logging
                        print("Saving logs to CSV")
                        doc_file_name = (
                            os.path.basename(args.input_file[0])
                            if args.display_file_names_in_logs
                            else "document"
                        )
                        data_file_name = ""

                        # Determine if this was a Textract API call
                        is_textract_call = True
                        args.ocr_method == "AWS Textract"

                        # Count API calls (approximate - would need to be tracked in the redaction function)
                        textract_queries = total_pages
                        comprehend_queries = 0

                        # Format handwriting/signature options
                        handwriting_signature = ""

                        log_redaction_usage(
                            logger=usage_logger,
                            session_hash=session_hash,
                            doc_file_name=doc_file_name,
                            data_file_name=data_file_name,
                            time_taken=processing_time,
                            total_pages=total_pages,
                            textract_queries=textract_queries,
                            pii_method=args.pii_detector,
                            comprehend_queries=comprehend_queries,
                            cost_code=args.cost_code,
                            handwriting_signature=handwriting_signature,
                            text_extraction_method=args.ocr_method,
                            is_textract_call=is_textract_call,
                            task=args.task,
                            save_to_dynamodb=args.save_logs_to_dynamodb,
                            save_to_s3=args.upload_logs_to_s3,
                            s3_bucket=args.s3_bucket,
                            s3_key_prefix=args.s3_logs_prefix,
                        )
                    except Exception as e:
                        print(f"Warning: Could not log usage data: {e}")

            elif args.textract_action == "retrieve":
                print(f"--- Retrieving Textract results for Job ID: {args.job_id} ---")

                from tools.textract_batch_call import (
                    load_in_textract_job_details,
                    poll_whole_document_textract_analysis_progress_and_download,
                )

                # Retrieve results by job ID
                if not args.job_id:
                    print("Error: --job_id is required for retrieve action.")
                    return

                # Load existing job details to get job type
                print("Loading existing job details...")
                job_df = load_in_textract_job_details(
                    load_s3_jobs_loc=args.s3_textract_document_logs_subfolder,
                    load_local_jobs_loc=args.local_textract_document_logs_subfolder,
                )

                # Find job type from the dataframe
                job_type = "document_text_detection"  # default
                if not job_df.empty and "job_id" in job_df.columns:
                    matching_jobs = job_df.loc[job_df["job_id"] == args.job_id]
                    if not matching_jobs.empty and "job_type" in matching_jobs.columns:
                        job_type = matching_jobs.iloc[0]["job_type"]

                # Use configured bucket or override
                textract_bucket = args.textract_bucket if args.textract_bucket else ""

                # Poll for completion and download results
                print("Polling for completion and downloading results...")
                downloaded_file_path, job_status, updated_job_df, output_filename = (
                    poll_whole_document_textract_analysis_progress_and_download(
                        job_id=args.job_id,
                        job_type_dropdown=job_type,
                        s3_output_prefix=args.textract_output_prefix,
                        pdf_filename="",  # Will be determined from job details
                        job_df=job_df,
                        s3_bucket_name=textract_bucket,
                        load_s3_jobs_loc=args.s3_textract_document_logs_subfolder,
                        load_local_jobs_loc=args.local_textract_document_logs_subfolder,
                        local_output_dir=args.output_dir,
                        poll_interval_seconds=args.poll_interval,
                        max_polling_attempts=args.max_poll_attempts,
                    )
                )

                print("\n--- Textract Results Retrieved Successfully ---")
                print(f"Job Status: {job_status}")
                print(f"Downloaded File: {downloaded_file_path}")
                # print(f"Output Filename: {output_filename}")

            elif args.textract_action == "list":
                from tools.textract_batch_call import load_in_textract_job_details

                # List recent Textract jobs
                print("--- Listing Recent Textract Jobs ---")

                job_df = load_in_textract_job_details(
                    load_s3_jobs_loc=args.s3_textract_document_logs_subfolder,
                    load_local_jobs_loc=args.local_textract_document_logs_subfolder,
                )

                if job_df.empty:
                    print("No recent Textract jobs found.")
                else:
                    print(f"\nFound {len(job_df)} recent Textract jobs:")
                    print("-" * 80)
                    for _, job in job_df.iterrows():
                        print(f"Job ID: {job.get('job_id', 'N/A')}")
                        print(f"File: {job.get('file_name', 'N/A')}")
                        print(f"Type: {job.get('job_type', 'N/A')}")
                        print(f"Signatures: {job.get('signature_extraction', 'N/A')}")
                        print(f"Date: {job.get('job_date_time', 'N/A')}")
                        print("-" * 80)

            else:
                print(f"Error: Invalid textract_action '{args.textract_action}'.")
                print("Valid options: 'submit', 'retrieve', or 'list'")

        except Exception as e:
            print(f"\nAn error occurred during the Textract workflow: {e}")

    else:
        print(f"Error: Invalid task '{args.task}'.")
        print("Valid options: 'redact', 'deduplicate', or 'textract'")


if __name__ == "__main__":
    main()