File size: 13,938 Bytes
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import collections
import heapq
import math
import pickle
import sys
import time
import pandas as pd
from numpy import inf
import gradio as gr

from datetime import datetime

today_rev = datetime.now().strftime("%Y%m%d")

from search_funcs.clean_funcs import initial_clean # get_lemma_tokens, stem_sentence
from search_funcs.helper_functions import read_file, get_file_path_end_with_ext, get_file_path_end

# Load the SpaCy model
from spacy.cli import download
import spacy
spacy.prefer_gpu()

#os.system("python -m spacy download en_core_web_sm")
try:
	import en_core_web_sm
	nlp = en_core_web_sm.load()
	print("Successfully imported spaCy model")
    #nlp = spacy.load("en_core_web_sm")
    #print(nlp._path)
except:
	download("en_core_web_sm")
	nlp = spacy.load("en_core_web_sm")
	print("Successfully imported spaCy model")
    #print(nlp._path)

# including punctuation rules and exceptions
tokenizer = nlp.tokenizer

PARAM_K1 = 1.5
PARAM_B = 0.75
IDF_CUTOFF = -inf

# Class built off https://github.com/Inspirateur/Fast-BM25

class BM25:
	"""Fast Implementation of Best Matching 25 ranking function.

	Attributes
	----------
	t2d : <token: <doc, freq>>
		Dictionary with terms frequencies for each document in `corpus`.
	idf: <token, idf score>
		Pre computed IDF score for every term.
	doc_len : list of int
		List of document lengths.
	avgdl : float
		Average length of document in `corpus`.
	"""
	def __init__(self, corpus, k1=PARAM_K1, b=PARAM_B, alpha=IDF_CUTOFF):
		"""
		Parameters
		----------
		corpus : list of list of str
			Given corpus.
		k1 : float
			Constant used for influencing the term frequency saturation. After saturation is reached, additional
			presence for the term adds a significantly less additional score. According to [1]_, experiments suggest
			that 1.2 < k1 < 2 yields reasonably good results, although the optimal value depends on factors such as
			the type of documents or queries.
		b : float
			Constant used for influencing the effects of different document lengths relative to average document length.
			When b is bigger, lengthier documents (compared to average) have more impact on its effect. According to
			[1]_, experiments suggest that 0.5 < b < 0.8 yields reasonably good results, although the optimal value
			depends on factors such as the type of documents or queries.
		alpha: float
			IDF cutoff, terms with a lower idf score than alpha will be dropped. A higher alpha will lower the accuracy
			of BM25 but increase performance
		"""
		self.k1 = k1
		self.b = b
		self.alpha = alpha
		self.corpus = corpus

		self.avgdl = 0
		self.t2d = {}
		self.idf = {}
		self.doc_len = []
		if corpus:
			self._initialize(corpus)

	@property
	def corpus_size(self):
		return len(self.doc_len)

	def _initialize(self, corpus, progress=gr.Progress()):
		"""Calculates frequencies of terms in documents and in corpus. Also computes inverse document frequencies."""
		i = 0
		for document in progress.tqdm(corpus, desc = "Preparing search index", unit = "rows"):
			self.doc_len.append(len(document))

			for word in document:
				if word not in self.t2d:
					self.t2d[word] = {}
				if i not in self.t2d[word]:
					self.t2d[word][i] = 0
				self.t2d[word][i] += 1
			i += 1

		self.avgdl = sum(self.doc_len)/len(self.doc_len)
		to_delete = []
		for word, docs in self.t2d.items():
			idf = math.log(self.corpus_size - len(docs) + 0.5) - math.log(len(docs) + 0.5)
			# only store the idf score if it's above the threshold
			if idf > self.alpha:
				self.idf[word] = idf
			else:
				to_delete.append(word)
		print(f"Dropping {len(to_delete)} terms")
		for word in to_delete:
			del self.t2d[word]

		if len(self.idf) == 0:
			print("Alpha value too high - all words removed from dataset.")
			self.average_idf = 0

		else:
			self.average_idf = sum(self.idf.values())/len(self.idf)

		if self.average_idf < 0:
			print(
				f'Average inverse document frequency is less than zero. Your corpus of {self.corpus_size} documents'
				' is either too small or it does not originate from natural text. BM25 may produce'
				' unintuitive results.',
				file=sys.stderr
			)

	def get_top_n(self, query, documents, n=5):
		"""
		Retrieve the top n documents for the query.

		Parameters
		----------
		query: list of str
			The tokenized query
		documents: list
			The documents to return from
		n: int
			The number of documents to return

		Returns
		-------
		list
			The top n documents
		"""
		assert self.corpus_size == len(documents), "The documents given don't match the index corpus!"
		scores = collections.defaultdict(float)
		for token in query:
			if token in self.t2d:
				for index, freq in self.t2d[token].items():
					denom_cst = self.k1 * (1 - self.b + self.b * self.doc_len[index] / self.avgdl)
					scores[index] += self.idf[token]*freq*(self.k1 + 1)/(freq + denom_cst)

		return [documents[i] for i in heapq.nlargest(n, scores.keys(), key=scores.__getitem__)]
	

	def get_top_n_with_score(self, query, documents, n=5):
		"""
		Retrieve the top n documents for the query along with their scores.

		Parameters
		----------
		query: list of str
			The tokenized query
		documents: list
			The documents to return from
		n: int
			The number of documents to return

		Returns
		-------
		list
			The top n documents along with their scores and row indices in the format (index, document, score)
		"""
		assert self.corpus_size == len(documents), "The documents given don't match the index corpus!"
		scores = collections.defaultdict(float)
		for token in query:
			if token in self.t2d:
				for index, freq in self.t2d[token].items():
					denom_cst = self.k1 * (1 - self.b + self.b * self.doc_len[index] / self.avgdl)
					scores[index] += self.idf[token] * freq * (self.k1 + 1) / (freq + denom_cst)

		top_n_indices = heapq.nlargest(n, scores.keys(), key=scores.__getitem__)
		return [(i, documents[i], scores[i]) for i in top_n_indices]
	
	def extract_documents_and_scores(self, query, documents, n=5):
		"""
		Extract top n documents and their scores into separate lists.

		Parameters
		----------
		query: list of str
			The tokenized query
		documents: list
			The documents to return from
		n: int
			The number of documents to return

		Returns
		-------
		tuple: (list, list)
			The first list contains the top n documents and the second list contains their scores.
		"""
		results = self.get_top_n_with_score(query, documents, n)
		try:
			indices, docs, scores = zip(*results)
		except:
			print("No search results returned")
			return [], [], []
		return list(indices), docs, list(scores)

	def save(self, filename):
		with open(f"{filename}.pkl", "wb") as fsave:
			pickle.dump(self, fsave, protocol=pickle.HIGHEST_PROTOCOL)

	@staticmethod
	def load(filename):
		with open(f"{filename}.pkl", "rb") as fsave:
			return pickle.load(fsave)

# These following functions are my own work

def prepare_bm25_input_data(in_file, text_column, data_state, clean="No",  return_intermediate_files = "No", progress=gr.Progress()):

	file_list = [string.name for string in in_file]

	#print(file_list)

	data_file_names = [string for string in file_list if "tokenised" not in string and "embeddings" not in string]

	data_file_name = data_file_names[0]

	df = data_state #read_file(data_file_name)
	data_file_out_name = get_file_path_end_with_ext(data_file_name)
	data_file_out_name_no_ext = get_file_path_end(data_file_name)

	## Load in pre-tokenised corpus if exists
	tokenised_df = pd.DataFrame()

	tokenised_file_names = [string for string in file_list if "tokenised" in string]

	if tokenised_file_names:
		tokenised_df = read_file(tokenised_file_names[0])
		#print("Tokenised df is: ", tokenised_df.head())

	#df = pd.read_parquet(file_in.name)
	
	df[text_column] = df[text_column].astype(str).str.lower()
	
	if clean == "Yes":
		clean_tic = time.perf_counter()
		print("Starting data clean.")

		df = df.drop_duplicates(text_column)
		df_list = list(df[text_column])
		df_list = initial_clean(df_list)

		# Save to file if you have cleaned the data
		out_file_name, text_column = save_prepared_bm25_data(data_file_name, df_list, df, text_column)
	
		clean_toc = time.perf_counter()
		clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds."
		print(clean_time_out)

	else:
		# Don't clean or save file to disk
		df_list = list(df[text_column])
		print("No data cleaning performed.")
		out_file_name = None
		
	# Tokenise data. If tokenised df already exists, no need to do anything
	
	if not tokenised_df.empty:
		corpus = tokenised_df.iloc[:,0].tolist()
		print("Tokeniser loaded from file.")
		#print("Corpus is: ", corpus[0:5])

	# If doesn't already exist, tokenize texts in batches
	else:
		tokeniser_tic = time.perf_counter()
		corpus = []
		batch_size = 256
		for doc in tokenizer.pipe(progress.tqdm(df_list, desc = "Tokenising text", unit = "rows"), batch_size=batch_size):
			corpus.append([token.text for token in doc])

		tokeniser_toc = time.perf_counter()
		tokenizer_time_out = f"Tokenising the text took {tokeniser_toc - tokeniser_tic:0.1f} seconds."
		print(tokenizer_time_out)
		

	if len(df_list) >= 20:
		message = "Data loaded"
	else:
		message = "Data loaded. Warning: dataset may be too short to get consistent search results."

	if return_intermediate_files == "Yes":
		tokenised_data_file_name = data_file_out_name_no_ext + "_" + "keyword_search_tokenised_data.parquet"
		pd.DataFrame(data={"Corpus":corpus}).to_parquet(tokenised_data_file_name)

		return corpus, message, df, out_file_name, tokenised_data_file_name, data_file_out_name

	return corpus, message, df, out_file_name, None, data_file_out_name # tokenised_data_file_name

def save_prepared_bm25_data(in_file_name, prepared_text_list, in_df, in_bm25_column):

	# Check if the list and the dataframe have the same length
	if len(prepared_text_list) != len(in_df):
		raise ValueError("The length of 'prepared_text_list' and 'in_df' must match.")

	file_end = ".parquet"

	file_name = get_file_path_end(in_file_name) + "_cleaned" + file_end

	new_text_column = in_bm25_column + "_cleaned"
	prepared_text_df = pd.DataFrame(data={new_text_column:prepared_text_list})

	# Drop original column from input file to reduce file size
	in_df = in_df.drop(in_bm25_column, axis = 1)

	prepared_df = pd.concat([in_df, prepared_text_df], axis = 1)

	if file_end == ".csv":
		prepared_df.to_csv(file_name)
	elif file_end == ".parquet":
		prepared_df.to_parquet(file_name)
	else: file_name = None

	return file_name, new_text_column

def prepare_bm25(corpus, k1=1.5, b = 0.75, alpha=-5):
    #bm25.save("saved_df_bm25")
    #bm25 = BM25.load(re.sub(r'\.pkl$', '', file_in.name))

    print("Preparing BM25 corpus")

    global bm25
    bm25 = BM25(corpus, k1=k1, b=b, alpha=alpha)

    message = "Search parameters loaded."

    print(message)

    return message

def convert_bm25_query_to_tokens(free_text_query, clean="No"):
    '''
    Split open text query into tokens and then lemmatise to get the core of the word. Currently 'clean' has no effect.
    '''  

    if clean=="Yes":
        split_query = tokenizer(free_text_query.lower())
        out_query = [token.text for token in split_query]
        #out_query = stem_sentence(out_query)
    else: 
        split_query = tokenizer(free_text_query.lower())
        out_query = [token.text for token in split_query]

    print("Search query out is:", out_query)

    if isinstance(out_query,str):
        print("Converting string")
        out_query = [out_query]

    return out_query

def bm25_search(free_text_query, in_no_search_results, original_data, text_column, clean = "No", in_join_file = None, in_join_column = "", search_df_join_column = ""):   

    # Prepare query
    if (clean == "Yes") | (text_column.endswith("_cleaned")):
        token_query = convert_bm25_query_to_tokens(free_text_query, clean="Yes")
    else:
        token_query = convert_bm25_query_to_tokens(free_text_query, clean="No")

    #print(token_query)

    # Perform search
    print("Searching")

    results_index, results_text, results_scores = bm25.extract_documents_and_scores(token_query, bm25.corpus, n=in_no_search_results) #bm25.corpus #original_data[text_column]
    if not results_index:
        return "No search results found", None, token_query

    print("Search complete")

    # Prepare results and export
    joined_texts = [' '.join(inner_list) for inner_list in results_text]
    results_df = pd.DataFrame(data={"index": results_index,
                                    "search_text": joined_texts,
                                    "search_score_abs": results_scores})
    results_df['search_score_abs'] = abs(round(results_df['search_score_abs'], 2))
    results_df_out = results_df[['index', 'search_text', 'search_score_abs']].merge(original_data,left_on="index", right_index=True, how="left")#.drop("index", axis=1)
    
    # Join on additional files
    if in_join_file:
        join_filename = in_join_file.name

        # Import data
        join_df = read_file(join_filename)
        join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True)
        results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)

        # Duplicates dropped so as not to expand out dataframe
        join_df = join_df.drop_duplicates(in_join_column)

        results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left").drop(in_join_column, axis=1)
    
    # Reorder results by score
    results_df_out = results_df_out.sort_values('search_score_abs', ascending=False)

    # Out file
    results_df_name = "keyword_search_result_" + today_rev + ".csv"
    results_df_out.to_csv(results_df_name, index= None)
    results_first_text = results_df_out[text_column].iloc[0]

    print("Returning results")

    return results_first_text, results_df_name, token_query