Spaces:
Sleeping
Sleeping
File size: 13,938 Bytes
99d6fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import collections
import heapq
import math
import pickle
import sys
import time
import pandas as pd
from numpy import inf
import gradio as gr
from datetime import datetime
today_rev = datetime.now().strftime("%Y%m%d")
from search_funcs.clean_funcs import initial_clean # get_lemma_tokens, stem_sentence
from search_funcs.helper_functions import read_file, get_file_path_end_with_ext, get_file_path_end
# Load the SpaCy model
from spacy.cli import download
import spacy
spacy.prefer_gpu()
#os.system("python -m spacy download en_core_web_sm")
try:
import en_core_web_sm
nlp = en_core_web_sm.load()
print("Successfully imported spaCy model")
#nlp = spacy.load("en_core_web_sm")
#print(nlp._path)
except:
download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
print("Successfully imported spaCy model")
#print(nlp._path)
# including punctuation rules and exceptions
tokenizer = nlp.tokenizer
PARAM_K1 = 1.5
PARAM_B = 0.75
IDF_CUTOFF = -inf
# Class built off https://github.com/Inspirateur/Fast-BM25
class BM25:
"""Fast Implementation of Best Matching 25 ranking function.
Attributes
----------
t2d : <token: <doc, freq>>
Dictionary with terms frequencies for each document in `corpus`.
idf: <token, idf score>
Pre computed IDF score for every term.
doc_len : list of int
List of document lengths.
avgdl : float
Average length of document in `corpus`.
"""
def __init__(self, corpus, k1=PARAM_K1, b=PARAM_B, alpha=IDF_CUTOFF):
"""
Parameters
----------
corpus : list of list of str
Given corpus.
k1 : float
Constant used for influencing the term frequency saturation. After saturation is reached, additional
presence for the term adds a significantly less additional score. According to [1]_, experiments suggest
that 1.2 < k1 < 2 yields reasonably good results, although the optimal value depends on factors such as
the type of documents or queries.
b : float
Constant used for influencing the effects of different document lengths relative to average document length.
When b is bigger, lengthier documents (compared to average) have more impact on its effect. According to
[1]_, experiments suggest that 0.5 < b < 0.8 yields reasonably good results, although the optimal value
depends on factors such as the type of documents or queries.
alpha: float
IDF cutoff, terms with a lower idf score than alpha will be dropped. A higher alpha will lower the accuracy
of BM25 but increase performance
"""
self.k1 = k1
self.b = b
self.alpha = alpha
self.corpus = corpus
self.avgdl = 0
self.t2d = {}
self.idf = {}
self.doc_len = []
if corpus:
self._initialize(corpus)
@property
def corpus_size(self):
return len(self.doc_len)
def _initialize(self, corpus, progress=gr.Progress()):
"""Calculates frequencies of terms in documents and in corpus. Also computes inverse document frequencies."""
i = 0
for document in progress.tqdm(corpus, desc = "Preparing search index", unit = "rows"):
self.doc_len.append(len(document))
for word in document:
if word not in self.t2d:
self.t2d[word] = {}
if i not in self.t2d[word]:
self.t2d[word][i] = 0
self.t2d[word][i] += 1
i += 1
self.avgdl = sum(self.doc_len)/len(self.doc_len)
to_delete = []
for word, docs in self.t2d.items():
idf = math.log(self.corpus_size - len(docs) + 0.5) - math.log(len(docs) + 0.5)
# only store the idf score if it's above the threshold
if idf > self.alpha:
self.idf[word] = idf
else:
to_delete.append(word)
print(f"Dropping {len(to_delete)} terms")
for word in to_delete:
del self.t2d[word]
if len(self.idf) == 0:
print("Alpha value too high - all words removed from dataset.")
self.average_idf = 0
else:
self.average_idf = sum(self.idf.values())/len(self.idf)
if self.average_idf < 0:
print(
f'Average inverse document frequency is less than zero. Your corpus of {self.corpus_size} documents'
' is either too small or it does not originate from natural text. BM25 may produce'
' unintuitive results.',
file=sys.stderr
)
def get_top_n(self, query, documents, n=5):
"""
Retrieve the top n documents for the query.
Parameters
----------
query: list of str
The tokenized query
documents: list
The documents to return from
n: int
The number of documents to return
Returns
-------
list
The top n documents
"""
assert self.corpus_size == len(documents), "The documents given don't match the index corpus!"
scores = collections.defaultdict(float)
for token in query:
if token in self.t2d:
for index, freq in self.t2d[token].items():
denom_cst = self.k1 * (1 - self.b + self.b * self.doc_len[index] / self.avgdl)
scores[index] += self.idf[token]*freq*(self.k1 + 1)/(freq + denom_cst)
return [documents[i] for i in heapq.nlargest(n, scores.keys(), key=scores.__getitem__)]
def get_top_n_with_score(self, query, documents, n=5):
"""
Retrieve the top n documents for the query along with their scores.
Parameters
----------
query: list of str
The tokenized query
documents: list
The documents to return from
n: int
The number of documents to return
Returns
-------
list
The top n documents along with their scores and row indices in the format (index, document, score)
"""
assert self.corpus_size == len(documents), "The documents given don't match the index corpus!"
scores = collections.defaultdict(float)
for token in query:
if token in self.t2d:
for index, freq in self.t2d[token].items():
denom_cst = self.k1 * (1 - self.b + self.b * self.doc_len[index] / self.avgdl)
scores[index] += self.idf[token] * freq * (self.k1 + 1) / (freq + denom_cst)
top_n_indices = heapq.nlargest(n, scores.keys(), key=scores.__getitem__)
return [(i, documents[i], scores[i]) for i in top_n_indices]
def extract_documents_and_scores(self, query, documents, n=5):
"""
Extract top n documents and their scores into separate lists.
Parameters
----------
query: list of str
The tokenized query
documents: list
The documents to return from
n: int
The number of documents to return
Returns
-------
tuple: (list, list)
The first list contains the top n documents and the second list contains their scores.
"""
results = self.get_top_n_with_score(query, documents, n)
try:
indices, docs, scores = zip(*results)
except:
print("No search results returned")
return [], [], []
return list(indices), docs, list(scores)
def save(self, filename):
with open(f"{filename}.pkl", "wb") as fsave:
pickle.dump(self, fsave, protocol=pickle.HIGHEST_PROTOCOL)
@staticmethod
def load(filename):
with open(f"{filename}.pkl", "rb") as fsave:
return pickle.load(fsave)
# These following functions are my own work
def prepare_bm25_input_data(in_file, text_column, data_state, clean="No", return_intermediate_files = "No", progress=gr.Progress()):
file_list = [string.name for string in in_file]
#print(file_list)
data_file_names = [string for string in file_list if "tokenised" not in string and "embeddings" not in string]
data_file_name = data_file_names[0]
df = data_state #read_file(data_file_name)
data_file_out_name = get_file_path_end_with_ext(data_file_name)
data_file_out_name_no_ext = get_file_path_end(data_file_name)
## Load in pre-tokenised corpus if exists
tokenised_df = pd.DataFrame()
tokenised_file_names = [string for string in file_list if "tokenised" in string]
if tokenised_file_names:
tokenised_df = read_file(tokenised_file_names[0])
#print("Tokenised df is: ", tokenised_df.head())
#df = pd.read_parquet(file_in.name)
df[text_column] = df[text_column].astype(str).str.lower()
if clean == "Yes":
clean_tic = time.perf_counter()
print("Starting data clean.")
df = df.drop_duplicates(text_column)
df_list = list(df[text_column])
df_list = initial_clean(df_list)
# Save to file if you have cleaned the data
out_file_name, text_column = save_prepared_bm25_data(data_file_name, df_list, df, text_column)
clean_toc = time.perf_counter()
clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds."
print(clean_time_out)
else:
# Don't clean or save file to disk
df_list = list(df[text_column])
print("No data cleaning performed.")
out_file_name = None
# Tokenise data. If tokenised df already exists, no need to do anything
if not tokenised_df.empty:
corpus = tokenised_df.iloc[:,0].tolist()
print("Tokeniser loaded from file.")
#print("Corpus is: ", corpus[0:5])
# If doesn't already exist, tokenize texts in batches
else:
tokeniser_tic = time.perf_counter()
corpus = []
batch_size = 256
for doc in tokenizer.pipe(progress.tqdm(df_list, desc = "Tokenising text", unit = "rows"), batch_size=batch_size):
corpus.append([token.text for token in doc])
tokeniser_toc = time.perf_counter()
tokenizer_time_out = f"Tokenising the text took {tokeniser_toc - tokeniser_tic:0.1f} seconds."
print(tokenizer_time_out)
if len(df_list) >= 20:
message = "Data loaded"
else:
message = "Data loaded. Warning: dataset may be too short to get consistent search results."
if return_intermediate_files == "Yes":
tokenised_data_file_name = data_file_out_name_no_ext + "_" + "keyword_search_tokenised_data.parquet"
pd.DataFrame(data={"Corpus":corpus}).to_parquet(tokenised_data_file_name)
return corpus, message, df, out_file_name, tokenised_data_file_name, data_file_out_name
return corpus, message, df, out_file_name, None, data_file_out_name # tokenised_data_file_name
def save_prepared_bm25_data(in_file_name, prepared_text_list, in_df, in_bm25_column):
# Check if the list and the dataframe have the same length
if len(prepared_text_list) != len(in_df):
raise ValueError("The length of 'prepared_text_list' and 'in_df' must match.")
file_end = ".parquet"
file_name = get_file_path_end(in_file_name) + "_cleaned" + file_end
new_text_column = in_bm25_column + "_cleaned"
prepared_text_df = pd.DataFrame(data={new_text_column:prepared_text_list})
# Drop original column from input file to reduce file size
in_df = in_df.drop(in_bm25_column, axis = 1)
prepared_df = pd.concat([in_df, prepared_text_df], axis = 1)
if file_end == ".csv":
prepared_df.to_csv(file_name)
elif file_end == ".parquet":
prepared_df.to_parquet(file_name)
else: file_name = None
return file_name, new_text_column
def prepare_bm25(corpus, k1=1.5, b = 0.75, alpha=-5):
#bm25.save("saved_df_bm25")
#bm25 = BM25.load(re.sub(r'\.pkl$', '', file_in.name))
print("Preparing BM25 corpus")
global bm25
bm25 = BM25(corpus, k1=k1, b=b, alpha=alpha)
message = "Search parameters loaded."
print(message)
return message
def convert_bm25_query_to_tokens(free_text_query, clean="No"):
'''
Split open text query into tokens and then lemmatise to get the core of the word. Currently 'clean' has no effect.
'''
if clean=="Yes":
split_query = tokenizer(free_text_query.lower())
out_query = [token.text for token in split_query]
#out_query = stem_sentence(out_query)
else:
split_query = tokenizer(free_text_query.lower())
out_query = [token.text for token in split_query]
print("Search query out is:", out_query)
if isinstance(out_query,str):
print("Converting string")
out_query = [out_query]
return out_query
def bm25_search(free_text_query, in_no_search_results, original_data, text_column, clean = "No", in_join_file = None, in_join_column = "", search_df_join_column = ""):
# Prepare query
if (clean == "Yes") | (text_column.endswith("_cleaned")):
token_query = convert_bm25_query_to_tokens(free_text_query, clean="Yes")
else:
token_query = convert_bm25_query_to_tokens(free_text_query, clean="No")
#print(token_query)
# Perform search
print("Searching")
results_index, results_text, results_scores = bm25.extract_documents_and_scores(token_query, bm25.corpus, n=in_no_search_results) #bm25.corpus #original_data[text_column]
if not results_index:
return "No search results found", None, token_query
print("Search complete")
# Prepare results and export
joined_texts = [' '.join(inner_list) for inner_list in results_text]
results_df = pd.DataFrame(data={"index": results_index,
"search_text": joined_texts,
"search_score_abs": results_scores})
results_df['search_score_abs'] = abs(round(results_df['search_score_abs'], 2))
results_df_out = results_df[['index', 'search_text', 'search_score_abs']].merge(original_data,left_on="index", right_index=True, how="left")#.drop("index", axis=1)
# Join on additional files
if in_join_file:
join_filename = in_join_file.name
# Import data
join_df = read_file(join_filename)
join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True)
results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)
# Duplicates dropped so as not to expand out dataframe
join_df = join_df.drop_duplicates(in_join_column)
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left").drop(in_join_column, axis=1)
# Reorder results by score
results_df_out = results_df_out.sort_values('search_score_abs', ascending=False)
# Out file
results_df_name = "keyword_search_result_" + today_rev + ".csv"
results_df_out.to_csv(results_df_name, index= None)
results_first_text = results_df_out[text_column].iloc[0]
print("Returning results")
return results_first_text, results_df_name, token_query
|