File size: 16,454 Bytes
bd8cbd2
 
 
5bf1eab
 
0c53877
 
 
bd8cbd2
 
5bf1eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5d67a
5bf1eab
 
 
bd8cbd2
5bf1eab
 
 
 
 
 
 
 
bd8cbd2
5bf1eab
 
 
 
 
 
 
 
 
 
bd8cbd2
5bf1eab
 
 
 
 
 
 
 
bd8cbd2
5bf1eab
 
 
 
 
0c53877
5bf1eab
 
 
 
 
 
 
 
0c53877
5bf1eab
 
 
 
 
 
d96e9f3
 
5bf1eab
 
 
 
 
 
 
 
 
 
 
 
 
d96e9f3
0c53877
5bf1eab
 
 
 
 
 
 
 
0c53877
5bf1eab
 
 
 
d96e9f3
0c53877
5bf1eab
 
 
 
 
 
 
 
0c53877
5bf1eab
 
 
 
 
0c53877
5bf1eab
 
 
 
 
 
 
 
0c53877
5bf1eab
 
 
 
 
0c53877
5bf1eab
 
 
 
 
 
 
 
0c53877
5bf1eab
 
 
 
 
0c53877
5bf1eab
 
 
 
 
 
 
 
0c53877
5bf1eab
 
 
 
 
0c53877
5bf1eab
 
 
 
 
 
 
 
0c53877
5bf1eab
 
 
 
 
 
 
 
 
 
 
 
 
 
bd8cbd2
 
 
5bf1eab
bd8cbd2
 
5bf1eab
bd8cbd2
5bf1eab
 
bd8cbd2
 
0c53877
5bf1eab
bd8cbd2
5bf1eab
0c53877
bd8cbd2
 
 
 
0c53877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf1eab
0c53877
 
 
 
 
 
 
 
 
5bf1eab
0c53877
bd8cbd2
5bf1eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd8cbd2
5bf1eab
 
 
bd8cbd2
 
5bf1eab
 
 
 
 
 
 
9f5d67a
0c53877
9f5d67a
5bf1eab
 
0c53877
5bf1eab
0c53877
 
5bf1eab
 
0c53877
5bf1eab
 
0c53877
 
5bf1eab
 
9f5d67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf1eab
9f5d67a
 
 
 
5bf1eab
 
 
 
 
 
 
 
 
 
 
 
 
bd8cbd2
5bf1eab
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
import os
import json
import tempfile
import shutil
import zipfile
from huggingface_hub import snapshot_download

# Constants for PhysicalCodeBench
TITLE = """
<div style="text-align: center; max-width: 900px; margin: 0 auto;">
    <div>
        <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
            PhysicalCodeBench Leaderboard
        </h1>
        <h3 style="margin-top: 0; margin-bottom: 10px; font-weight: 500;">
            Evaluating LLMs on Physics-based Simulation Code Generation
        </h3>
    </div>
</div>
"""

INTRODUCTION_TEXT = """
PhysicalCodeBench evaluates the abilities of Large Language Models (LLMs) to generate code for physics-based simulations. 
The benchmark consists of user instructions that describe physical scenarios to be simulated, reference code implementations, 
and resulting simulation videos generated using the [Genesis](https://github.com/Genesis-Embodied-AI/Genesis) physics engine.

This leaderboard showcases model performance on the PhysicalCodeBench-50 dataset, measuring both text-based execution success 
and visual quality of the generated simulations.
"""

ABOUT_TEXT = """
## About PhysicalCodeBench

PhysicalCodeBench evaluates an LLM's ability to:
- Understand natural language descriptions of physical scenarios
- Generate executable code that correctly implements the physics simulation
- Produce visually accurate and physically plausible results

The benchmark covers a variety of physical phenomena including:
- Rigid body dynamics (collisions, rolling, bouncing, etc.)
- Fluid and particle simulations
- Soft body physics
- Controlled environments (robotic arms, drones, etc.)
- Chain reactions and complex interactions

## Evaluation Metrics

PhysicalCodeBench uses two main evaluation dimensions:

1. **Text Score (50 points)**: Evaluates code execution success
   - Code runs without errors (25 points)
   - Generates proper output files (10 points)
   - Output files meet required specifications (15 points)

2. **Visual Score (50 points)**: Evaluates simulation quality
   - CLIP Score: Measures text-video alignment (25 points)
   - Motion Smoothness: Evaluates physics simulation quality (25 points)

Total score is the sum of Text and Visual scores (maximum 100 points).
"""

SUBMISSION_TEXT = """
## How to Submit Your Model Results

1. Fork the [PhysicalCodeBench repository](https://github.com/Sealical/PhysicalCodeBench)
2. Generate code for all 50 tasks in the benchmark using your model
3. Run the evaluation pipeline with your generated code
4. Create a submission folder with the following structure:
   ```
   submission/
   β”œβ”€β”€ model_info.json       # Contains model details (name, size, etc.)
   β”œβ”€β”€ evaluation_results/   # Directory containing all result files
   └── PhysCodeEval_results.json  # Main evaluation results file
   ```
5. Zip your submission folder and upload it below along with your model details

Your submission will be verified and added to the leaderboard once approved.
"""

CITATION_TEXT = """
@article{PhysicalCodeBench2025,
  title={PhysicalCodeBench: Evaluating LLMs on Physics-based Simulation Code Generation},
  author={Your Name and Co-authors},
  journal={arXiv preprint arXiv:XXXX.XXXXX},
  year={2025}
}
"""

# Custom CSS for the interface
custom_css = """
.markdown-text {
    font-size: 16px !important;
    text-align: left !important;
}
.tab-button {
    font-size: 16px !important;
}
"""

# Define column structure for the leaderboard
class PhysCodeColumn:
    def __init__(self, name, type, displayed_by_default=True, never_hidden=False, hidden=False):
        self.name = name
        self.type = type
        self.displayed_by_default = displayed_by_default
        self.never_hidden = never_hidden
        self.hidden = hidden

# Define the columns for our leaderboard
COLUMNS = [
    PhysCodeColumn("rank", "number", True, True, False),
    PhysCodeColumn("model", "str", True, True, False),
    PhysCodeColumn("model_type", "str", True, False, False),
    PhysCodeColumn("organization", "str", True, False, False),
    PhysCodeColumn("text_score", "number", True, False, False),
    PhysCodeColumn("visual_score", "number", True, False, False),
    PhysCodeColumn("total_score", "number", True, False, False),
    PhysCodeColumn("clip_score", "number", False, False, False),
    PhysCodeColumn("motion_smooth_score", "number", False, False, False),
    PhysCodeColumn("execution_success", "number", False, False, False),
    PhysCodeColumn("file_generation", "number", False, False, False),
    PhysCodeColumn("file_quality", "number", False, False, False),
    PhysCodeColumn("submission_date", "date", False, False, False)
]

# Enums for model metadata
class ModelType:
    Proprietary = "Proprietary"
    OpenSource = "Open Source"
    CloseSource = "Close Source"
    API = "API"
    Unknown = "Unknown"
    
    @staticmethod
    def to_str(model_type):
        return model_type

# Load sample data (replace with your actual data loading logic)
def get_leaderboard_df():
    # Sample data based on your README
    data = [
        {
            "rank": 1,
            "model": "GPT4o",
            "model_type": ModelType.CloseSource,
            "organization": "OpenAI",
            "text_score": 16.0,
            "visual_score": 18.262,
            "total_score": 34.262,
            "clip_score": 10.2,
            "motion_smooth_score": 8.062,
            "execution_success": 10.0,
            "file_generation": 3.0,
            "file_quality": 3.0,
            "submission_date": "2025-01-15"
        },
        {
            "rank": 2,
            "model": "Gemini-2.0-flash",
            "model_type": ModelType.CloseSource,
            "organization": "Google",
            "text_score": 15.0,
            "visual_score": 16.963,
            "total_score": 31.963,
            "clip_score": 9.5,
            "motion_smooth_score": 7.463,
            "execution_success": 9.0,
            "file_generation": 3.0,
            "file_quality": 3.0,
            "submission_date": "2025-01-20"
        },
        {
            "rank": 3,
            "model": "DS-R1",
            "model_type": ModelType.OpenSource,
            "organization": "DeepSeek",
            "text_score": 14.0,
            "visual_score": 15.815,
            "total_score": 29.815,
            "clip_score": 8.9,
            "motion_smooth_score": 6.915,
            "execution_success": 8.5,
            "file_generation": 3.0,
            "file_quality": 2.5,
            "submission_date": "2025-01-25"
        },
        {
            "rank": 4,
            "model": "DeepSeek-R1-Distill-Qwen-32B",
            "model_type": ModelType.OpenSource,
            "organization": "DeepSeek",
            "text_score": 12.2,
            "visual_score": 15.82,
            "total_score": 28.02,
            "clip_score": 8.8,
            "motion_smooth_score": 7.02,
            "execution_success": 7.2,
            "file_generation": 2.5,
            "file_quality": 2.5,
            "submission_date": "2025-01-28"
        },
        {
            "rank": 5,
            "model": "QwQ-32B",
            "model_type": ModelType.OpenSource,
            "organization": "QwQ Team",
            "text_score": 7.1,
            "visual_score": 8.964,
            "total_score": 16.064,
            "clip_score": 4.964,
            "motion_smooth_score": 4.0,
            "execution_success": 4.1,
            "file_generation": 1.5,
            "file_quality": 1.5,
            "submission_date": "2025-02-05"
        },
        {
            "rank": 6,
            "model": "Qwen-2.5-32B",
            "model_type": ModelType.OpenSource,
            "organization": "Alibaba",
            "text_score": 0.7,
            "visual_score": 1.126,
            "total_score": 1.826,
            "clip_score": 0.626,
            "motion_smooth_score": 0.5,
            "execution_success": 0.5,
            "file_generation": 0.1,
            "file_quality": 0.1,
            "submission_date": "2025-02-10"
        }
    ]
    
    return pd.DataFrame(data)

# Function to load submission from JSON file
def load_submissions_from_json(json_path):
    if os.path.exists(json_path):
        with open(json_path, 'r') as f:
            data = json.load(f)
        return pd.DataFrame(data)
    return None

# Initialize the leaderboard
def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in COLUMNS],
        select_columns=SelectColumns(
            default_selection=[c.name for c in COLUMNS if c.displayed_by_default],
            cant_deselect=[c.name for c in COLUMNS if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=["model", "organization"],
        hide_columns=[c.name for c in COLUMNS if c.hidden],
        filter_columns=[
            ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
            ColumnFilter("organization", type="checkboxgroup", label="Organizations"),
        ],
        interactive=False,
    )

# Function to handle ZIP file upload and extraction
def process_zip_submission(zip_file):
    if zip_file is None:
        return "No file uploaded. Please upload a ZIP file containing your submission."
    
    # Create temp directory for extraction
    temp_dir = tempfile.mkdtemp()
    
    try:
        # Extract the zip file
        with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
            zip_ref.extractall(temp_dir)
        
        # Check for required files
        model_info_path = os.path.join(temp_dir, "model_info.json")
        results_json_path = os.path.join(temp_dir, "PhysCodeEval_results.json")
        
        if not os.path.exists(model_info_path):
            return "Error: model_info.json not found in the ZIP file."
        
        if not os.path.exists(results_json_path):
            return "Error: PhysCodeEval_results.json not found in the ZIP file."
        
        # Load model info
        with open(model_info_path, 'r') as f:
            model_info = json.load(f)
        
        # Check for required model info fields
        required_fields = ["model_name", "model_type", "organization"]
        missing_fields = [field for field in required_fields if field not in model_info]
        
        if missing_fields:
            return f"Error: Missing required fields in model_info.json: {', '.join(missing_fields)}"
        
        # TODO: Process the submission files (this would involve your validation logic)
        
        return f"Successfully processed submission for {model_info['model_name']} by {model_info['organization']}. Your submission will be reviewed and added to the leaderboard once approved."
    
    except zipfile.BadZipFile:
        return "Error: Invalid ZIP file."
    except Exception as e:
        return f"Error processing submission: {str(e)}"
    finally:
        # Clean up
        shutil.rmtree(temp_dir)

# Submission form handling
def process_submission(model_name, model_type, organization, team_name, email, submission_link):
    # Check for required fields
    if not model_name:
        return "Error: Model name is required."
    if not model_type:
        return "Error: Model type is required."
    if not email:
        return "Error: Contact email is required."
    
    # This would be implemented to handle actual submission processing
    return f"Thank you for submitting {model_name} from {organization or team_name}! Your submission will be reviewed and added to the leaderboard once verified. We will contact you at {email} if we need additional information."

# Main application
def create_demo():
    # Load the leaderboard data
    leaderboard_df = get_leaderboard_df()
    
    # Create the Gradio interface
    demo = gr.Blocks(css=custom_css)
    
    with demo:
        gr.HTML(TITLE)
        gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
        
        with gr.Tabs() as tabs:
            with gr.TabItem("πŸ… Leaderboard", id=0):
                leaderboard = init_leaderboard(leaderboard_df)
                
            with gr.TabItem("πŸ“Š Visualizations", id=1):
                gr.Markdown("## Performance Comparisons")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Text vs. Visual Scores")
                        # Add a visualization component here (e.g., scatter plot)
                    
                    with gr.Column():
                        gr.Markdown("### Score Breakdown by Task Type")
                        # Add a visualization component here (e.g., bar chart)
                
                with gr.Row():
                    model_selector = gr.Dropdown(
                        choices=leaderboard_df["model"].tolist(),
                        label="Select Model for Detailed Analysis",
                        multiselect=False,
                    )
                    
            with gr.TabItem("πŸ“ About", id=2):
                gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
            
            with gr.TabItem("πŸš€ Submit", id=3):
                gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
                
                gr.Markdown("### Submission Details")
                with gr.Row():
                    zip_file_input = gr.File(label="Upload submission ZIP file*")
                with gr.Row():
                    with gr.Column():
                        model_name_input = gr.Textbox(label="Model Name*")
                        model_type_input = gr.Dropdown(
                            choices=["Open Source", "Close Source", "API", "Proprietary"],
                            label="Model Type*",
                            multiselect=False,
                        )
                        organization_input = gr.Textbox(label="Organization (if applicable)")
                    
                    with gr.Column():
                        team_name_input = gr.Textbox(label="Team Name (if applicable)")
                        email_input = gr.Textbox(label="Contact Email*")
                        submission_link_input = gr.Textbox(label="GitHub Pull Request URL")
                
                submit_button = gr.Button("Submit")
                submission_result = gr.Markdown()
                
                # Combined submission function that processes both ZIP and form data
                def combined_submission(zip_file, model_name, model_type, organization, team_name, email, submission_link):
                    if zip_file is None:
                        return "Error: Please upload a ZIP file containing your submission."
                    
                    if not model_name or not model_type or not email:
                        return "Error: Model name, model type, and email are required fields."
                    
                    # Process ZIP file
                    zip_result = process_zip_submission(zip_file)
                    if zip_result.startswith("Error:"):
                        return zip_result
                    
                    # Process form data
                    return f"Thank you for submitting {model_name} from {organization or team_name}! Your submission ZIP has been processed successfully. We will contact you at {email} if we need additional information."
                
                submit_button.click(
                    combined_submission,
                    [zip_file_input, model_name_input, model_type_input, organization_input, team_name_input, email_input, submission_link_input],
                    submission_result,
                )
        
        with gr.Row():
            with gr.Accordion("πŸ“™ Citation", open=False):
                citation_button = gr.Textbox(
                    value=CITATION_TEXT,
                    label="Citation",
                    lines=8,
                    elem_id="citation-button",
                    show_copy_button=True,
                )
    
    return demo

# Launch the application
if __name__ == "__main__":
    demo = create_demo()
    demo.launch()